
www.manaraa.com

www.manaraa.com

DUDLEY KI BY
NAVAL PG 3H00L

MOW 5-6002

www.manaraa.com

www.manaraa.com

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

MacCAD, Computer Aided Design Tool

For System Analysis

by

Kenneth MacDonald
• • •

December 1987

Thesis Advisor: George J. Thaler

Approved for public release; distribution is unlimited

. 39077

www.manaraa.com

www.manaraa.com

SECuR'Ty Classification OF ThiS PagT

REPORT DOCUMENTATION PAGE
I* REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2* SECURITY CLASSIFICATION AUTHORITY

2b OECiASSifiCATiON/ DOWNGRADING SCHEDULE

) DISTRIBUTION /AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

4 PERFORMING ORGANIZATION REPORT NJMBER(S) S MONITORING ORGANISATION REPORT NUM9ER(S)

Sj NAME OF PERFORMING ORGANIZATION

NAVAL POSTGRADUATE SCHOOl

60 OFFICE SYMBOL
(it iopi'dbtr)

62

7i NAME OF MON1TOR1NG ORGANIZATION

NAVAL POSTGRADUATE SCHOOL
x ADDRESS (Cry. intt. *nd ZIP Code)

MONTEREY, CALIFORNIA 93943-5000

7b ADDRESS (Cry. Srjt*. snd ZIP Code)

MONTEREY, CALIFORNIA93943-5000

a NAME OF FuNOiNG/SPONSORiNG
ORGANIZATION

8b OFFICE SYMBOL
(If *ppiK4bJe)

9 PROCUREMENT INSTRUMENT IDEN TiF iCATlON NUMBER

c AOORESS (Cry. Stste. *nd HP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK ./NiT

ACCESS ON NO

i T;Tl£ (include Security CUwticition)

MACCAD COMPUTER AIDED DESIGN TOOL FOR SYSTEM ANALYSIS
PERSONA^ auThOR(S)
MacDonald, Kenneth S.

j 'Y?j OF REPORT
Master's Thesis

1 3D T'ME COVERED
FROM TO

14 DATE OF REPORT (Yesr Month Ody)

1987 December
IS PAGE COv,NT

288
Supplementary notation

COSATi COOES

• EiD GROUP SuB GROUP

18 SUBJECT T£«mS (Continue on reverie it neceiury tnd identify by block number)

Control Systems, Linear Systems, Computer
Aided Design, Graphic Analysis

£BS r RAC T (Continue on reverie if necemry tnd identify by block number)

WacCAD, a computer aided design program, was developed as an
}f continuous, linear control systems for the graduate level
Electrical Engineering student. A variety of programs are pre
ible for the IBM-PC and the IBM Mainframe. MacCAD is written
operates on the Apple Macintosh. It was developed in order to
[for a powerful yet simple to use program with high quality gr
multiple window capabilities. It offers a highly flexible bio
capable of handling virtually unlimited blocks and loops, alo
standard analysis tools, Bode, Nyquist , Root Locus and Time r
Mouse and menu driven, it offers user defined plotting and ca
parameters which include multiple plot overlapping and linear
hie plot point intervals.

analysis tool
Controls or
sently avail-
in Pascal and
meet the nee I

aphics and
ck manipulato *

ng with the
esponse plots
lculat ion
or logarith-

I D S'R'3UT.ON / AVAILABILITY OF ABSTRACT

^-NClASSiFiEDAJNL'MiTED D SAME AS RPT D DTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
. NAME OF RESPONSIBLE iNOiViOUAL

Jeorge J. Thaler
22b TELEPHONE (include Are* Code)

(408) 646-2056
22c OFFICE SYMBOL

Code 62TR
FORM 1473. 84 mar 83 APR ed't'on mjy be u\ed until eih«u»ted

All other ed'tiom *'« obsolete
SECURITY CLASSIFICATION OF ThiS PAGE

www.manaraa.com

Approved for public release; distribution is unlimited.

MacCAD, Computer Aided Design Tool

For System Analysis

by

Kenneth S. MacDonald

Lieutenant, United States Navy

B.S.E.E. United States Naval Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1987

www.manaraa.com

ABSTRACT

MacCAD, a computer aided design program, was developed as an

analysis tool of continuous, linear control systems for the the

graduate level Controls or Electrical Engineering student. A variety

of programs are presently available for the IBM-PC and the IBM

Mainframe. MacCAD is written in Pascal and operates on the Apple

Macintosh. It was developed in order to meet the need for a powerful

yet simple to use program with high quality graphics and multiple

window capabilities. It offers a highly flexible block manipulator

capable of handling virtually unlimited blocks and loops, along with

the standard analysis tools, Bode, Nyquist, Root Locus and Time

response plots. Mouse and menu driven, it offers user defined

plotting and calculation parameters which include multiple plot

overlapping and linear or logarithmic plot point intervals.

www.manaraa.com

TABLE OF CONTENTS

I. CONTROL SYSTEM ANALYSIS USING MACCAD 8

A. BLOCK DIAGRAMS 8

B. MACCAD CAPABILITIES 9

C. PROGRAMMING PHILOSOPHY 11

II. BASIC MACINTOSH USE .13

A. DESKTOP 13

B. MOUSE 14

C. WINDOWS 15

D. PULL DOWN MENUS 16

E DESK ACCESSORIES 17

F. KEYBOARD 18

G DIALOG BOXES 19

H. BASIC PRINTING 22

I. SUMMARY 23

III. STANDARD MACINTOSH MENUS 24

A. BASIC DESCRIPTION 24

B. APPLE MENU 24

C. FILE MENU 25

1

.

New 25

2. Open 26

3. Save
,

28

4. Save As 29

www.manaraa.com

DTOLF" !B,AB,T
NAV

I WFOOL
MONTEREY, CALi

. -VVW>

5. Print 29

6. Quit 31

D. EDIT MENU 31

E PROGRAMMER'S NOTES 32

F. USERS' TIPS 35

IV. BLOCK MANIPULATOR 38

A. BLOCKS AND GROUPS 38

B. PROGRAMMER'S NOTES 41

C. ENTERING DATA . .43

D. DISPLAYING BLOCK DATA FOR CHANGING 45

E WEAPON FIRE CONTROL SYSTEM EXAMPLE 47

V. BODE PLOT 67

A. BASIC DESCRIPTION 67

B. USER OPTIONS 68

C. PROGRAMMER'S NOTES. BODE DATA

CALCULATION AND DISPLAY 70

D. BAND PASS FILTER EXAMPLE 74

VI. NYQUIST PLOT 86

A. BASIC DESCRIPTION 86

B. USER OPTIONS 89

C. ILLUSTRATIVE EXAMPLE 1 .90

D. ILLUSTRATIVE EXAMPLE 2 99

E PROGRAMMER'S NOTES 104

F. USER'S TIPS 107

VII. ROOTFINDER 111

www.manaraa.com

A. BASIC DESCRIPTION111

B. A SIMPLE EXAMPLE .111

C. PROGRAMMER'S NOTES: ROOTFINDER PROCEDURE ..114

VIII. ROOT LOCUS .119

A. BASIC DESCRIPTION . 119

B. USER OPTIONS 119

C. FOURTH ORDER

CHARACTERISTIC EQUATION EXAMPLE 121

D. PROGRAMMER'S NOTES 127

IX. TIME RESPONSE 130

A. BASIC DESCRIPTION 130

B. USER OPTIONS 131

C. TIME RESPONSE CALCULATIONS 132

D. ILLUSTRATIVE EXAMPLE 1 . THE UNIT STEP INPUT ..134

E ILLUSTRATIVE EXAMPLE 2. THE RAMP INPUT 137

F. ILLUSTRATIVE EXAMPLE 3. THE SINE WAVE INPUT . 1 40

G ILLUSTRATIVE EXAMPLE 4. THE IMPULSE INPUT 1 44

H. PROGRAMMER'S NOTES 148

I. USER'S TIPS 152

X MACCAD SUBROUTINES AND LIBRARIES 155

A. BASIC DESCRIPTION 155

B. SANE LIBRARY 155

C. PROGRAMMER'S EXTENDER 156

D. NUMBERCRUNCH ROUTINES 157

XI. CONCLUSIONS 165

A. SUMMARY OF PROGRAM 165

www.manaraa.com

B. POTENTIAL FOR IMPROVEMENT 166

APPENDIX SOURCE CODE 167

LIST OF REFERENCES 285

INITIAL DISTRIBUTION LIST 286

7

www.manaraa.com

I. CONTROL SYSTEM ANALYSIS USING MACCAD

A. BLOCK DIAGRAMS.

Most systems studied by the Control Systems student can be

considered Single Input Single Output or SISO. As the title

suggests, there is only one input and one output. Although there are

many measurable states of the system that may be of interest,

there is generally only one output that is of prime concern. For

example consider a weapon fire control system. Its purpose is

simply to aim the weapon at the target. As the target moves the

weapon should follow its motion with an acceptable error.

Acceptable error means that the weapon projectile will still be

effective against the target. The input for this system could be the

output from a fire control radar which reports the targets position.

The output of the fire control system is the position of the weapon

barrel. This would be a SISO system. As mentioned earlier, there

may be several states that are of interest. The velocity or

acceleration of the barrel during positioning may dictate

limitations on the system due to structural strength of the weapon

or the power available with which to move it.

Once we have defined the system to analyze, we can use block

diagrams to represent it.
1 The block diagram is ideal for this

1 Block diagrams can of course be used for Multiple Input

Multiple Output (MIMO) also.

8

www.manaraa.com

because it offers symbolic representation in the form of system

units or blocks which helps us to understand the various block's

functions from their relative positions. Each unit is shown as a

block with one input and one output. The relationship between a

block's input and output is usually displayed as a LaPlace transfer

function shown inside the block. From the properties of LaPlace,

we can cascade these unit blocks and calculate the equivalent

transfer function by multiplication. Very complex systems can be

easily simplified by basic block diagram manipulation techniques.

In addition, by displaying each system unit as a separate block, any

value in a block's transfer function can be changed and the new

system response easily checked.

B. MAC CAD CAPABILITIES.

The program name MacCAD stands for Macintosh Computer

Aided Design. It is a program written for the Apple Macintosh 2

personal computer which allows the user to design, analyze and

test control systems of his choice. The system data is entered in

the form of LaPlace equations for each of the system blocks. The

data of the blocks entered can be changed in any way, deleted, or

all the blocks can be simplified into a single block to allow for

expanding into a larger, more complex system. Regardless of the

system complexity, the equivalent transfer function for the entire

system is automatically calculated by the program. The system can

2 Apple Macintosh models supported by MacCAD are the basic

Macintosh, Macintosh Enhanced, Macintosh Plus and the Macintosh SE.

www.manaraa.com

then be analyzed by a variety of popular analysis tools. These

include Bode Plots, Nyquist Plots, Time response and Root Locus.

The Bode Plot shows the output of the system based on a sinusoidal

input. It is a cartesian plot with the magnitude and phase delay of

the output plotted against the frequency of the input. The Nyquist

Plot is a polar plot of the magnitude and phase of the output. Both

the Nyquist and Bode frequency plots graphically display a great

deal of information such as the systems stability, the speed at

which it will respond to an input and as in the case of electrical

filters, what frequencies will be passed, which will be attenuated

and by how much. MacCAD also provides analysis within the time

domain. The response of the system to various types of inputs such

as an impulse, step or ramp can also be displayed graphically. The

time response shows how quickly the system can respond to these

inputs as well as the overshoot, the transient oscillations and the

steady state error. Basic transient response characteristics are

also obtained from the Root Locus. This is a cartesian plot in the 's'

domain of the roots of the characteristic equation of the closed

loop transfer function. This plot shows that by changing the gain of

the forward path of the system, the roots can be placed in the

desired location. By changing various other variables of the

system, it can be seen how the response will change. All these

tools, and the other utilities available by MacCAD will be discussed

in further detail in later chapters.

10

www.manaraa.com

C. PROGRAMMING PHILOSOPHY.

MacCAD was written in the computer language PASCAL which

is the native language of the Apple Macintosh. It was designed and

written with the same user friendliness and standard interface

philosophy the Macintosh was designed for. The Macintosh gets

most of its input from the user through the 'mouse' which is a

small cigarette pack sized control that is moved across the table

much like a pencil across paper to move the cursor, or pointer on

the computer screen. Rather than typing in commands like the IBM,

the Mac lets you select the function you want performed with the

mouse. Since the commands are not typed in, the commands do not

have to be remembered as with other computers. This lets the user

concentrate more on what he wants the computer to do rather than

how to get the computer to do it. It is this user friendliness that

sets MacCAD apart from other system analysis programs.

Prior computer experience is not required to use MacCAD. A

few minutes to learn how to use the mouse and the pull-down

menus is all that is needed. All tools and utilities are easy to use

and self explanatory so the first time user can get desired results

without using trial and error. Regardless of what plot you may be

looking at or what function you may have just finished using, all of

the program's features are still available to you. This means that

you will not find yourself in the situation where 'you can't get

there from here.' In a word, the Macintosh is not 'modal' which

means that you do not have to back track through the menus or

commands that got you where you are, to get back to where you

11

www.manaraa.com

want to be. For example, while viewing the Bode plot, you may want

to look at the equivalent transfer function characteristic equation.

This evolution is completed on top of the plot displayed. After

checking the transfer function, the Bode plot is still there. You may

then want to compare your Bode plot findings with the Nyquist plot.

You can even display both plots side by side. This is just one of the

capabilities that are unique to MacCAD.

12

www.manaraa.com

II. BASIC MACINTOSH USE

In as much as this document is a technical explanation of the

program and it's capabilities, it must also serve as a user's manual. For

this reason, the following brief explanation of the Macintosh use is

included. It is by no means a substitute for the Apple Macintosh Users

Manual but it will contain enough information for the beginner to be

able to use MacCAD. It is highly recommended for the user to read the

Users Manual as it explains the use of the Mac's clipboard, scrapbook

and many other tools which will be of use but will not be discussed

here.

A. DESKTOP.

The Mac display is in the form of a desk top. Rather than a

textual list of commands and responses. The Mac desktop simulates

the working environment. It is initially clear, displaying small

graphic images, called Icons with short titles directly under them

for each disk presently being used and a trash can in the lower

right corner. An icon is an image representation of an application,

document 1 or a control to a usable function. They offer quick

1 Files that represent runable programs are called

"applications". Files that are created from a particular application

are called "documents." In most cases, any particular document is

associated with only one application, the one that created or uses it.

With a few exceptions, a document created by one application,

cannot be run or used by another application.

13

www.manaraa.com

recognition as to the type of item they describe and are easier to

identify than lists or directories of file names with extensions.

B. MOUSE

The main interface between the user and the Mac is the mouse.

The button on the mouse signals to the Mac that it's present location

is of specific importance to the user. Moving the mouse moves the

cursor or 'pointer' on the screen in the same direction. Positioning

the pointer on an item is called 'pointing' to it. The mouse is used to

'select' various items or icons on the screen. Macintosh operation is

in the form of 'selection precedes operation.' This means that you

identify the item that you want to perform an operation on and then

indicate what operation you want performed. When an item is

selected, it is highlighted or outlined so you always know what you

told the computer to operate on.

An item can be selected in three ways. An icon can be selected

by pointing to it and 'clicking,' or pressing and releasing the mouse

button. The icon is now selected and highlighted.

Another method of selection is double clicking. This is just like

clicking but it is quickly done twice. This does more than just select

an item, it also tells the computer to start whatever application or

function that item represents. For example, if you double click the

mouse on the MacCAD icon, the icon will be selected but the MacCAD

application will start running. If a document from an application is

double clicked, the application will be run and the document will be

loaded into it.

14

www.manaraa.com

icon of a disk will open a window displaying the contents of the

disks in the form of icons2 .

The mouse can also be used to drag across something. This

means the button is pressed and held while the mouse is moved. This

action is called dragging. When dragging the mouse across the

screen, a rectangle is outlined. When the button is released,

everything within the rectangle is now highlighted and selected.

Dragging also refers to moving items on the screen. This is done

by pointing to an item, pressing and holding the button and moving

the mouse. This will also move an outline of the icon selected and

when the button is released, the icon is moved to the new location.

Depending on where the icon is moved to, various things can happen.

For example if a document or application is dragged to the trash in

the lower right of the screen, it has been thrown away and is erased

from whatever disk it came from. If you drag a something from one

disk to another, you have just made a copy of it on the second disk.

C. WINDOWS.

The window mentioned earlier is a rectangular enclosed portion

of the screen that lets you 'see' the contents of something. A window

will display the contents of the disk being used. It can display

applications, documents and folders. Folders are a way of storing and

organizing things, much like in a file drawer. Double clicking on a

folder will open a window that displays it's contents. Folders can be

2 Disk and folder contents can be displayed in forms other than

icons. Experiment with the View menu on the desktop.

15

www.manaraa.com

located in disks or within other folders. Usually 8 to 12 windows are

the maximum that can be open at any one time. When several windows

are displayed at once, they will usually overlap. If the window you

want to view is partially covered by another window, pointing

anywhere in your window and clicking will select it and make it the

active window. This means that it will be displayed on top of all the

other windows and you can now do things in that window, such as

move or select icons or open other folders. The active window is that

which was last opened or used by the mouse. The window that is

active can be identified by it's title bar, the bar that goes across the

top of the window rectangle. When active, there are several parallel

lines across the top. The window can also be moved just like an icon

by clicking in the title bar and dragging the window. It can be closed

by clicking in the small square in the upper left corner or resized by

dragging the square in the lower right corner to the desired size.

D. PULL DOWN MENUS.

Across the top of the screen is the menu bar with the titles of the

menus that can be used. Pointing to one of the titles and pressing the

button will highlight the title and display the available menu items

you can use in the form of a list hanging below the title. The desired

menu item is selected by moving the mouse down the list and releasing

the button then pointing to the desired item. If a menu item appears

dimmed, that means that item is 'inactive' or cannot be used at this

time. Selecting it will do nothing. To the right of a menu item you may

16

www.manaraa.com

see a clover like symbol followed by a single letter. This means there

is a keyboard shortcut for selecting that particular menu item. To

select that item from the keyboard, you press the 'command' key, the

key next to the space bar with the clover symbol on it, and the letter

shown in the menu at the same time. The menu item will be selected

just as if you did it with the mouse. Typical menu selections that

might be made are: OPEN, which will open a folder or disk window or

will run an application or document just like double clicking, CLOSE

will do the same as clicking in the close box of a window, QUIT will

stop the current application from running and will return you to the

desktop. In MacCAD you can use menu items to view and manipulate

system transfer functions or open windows that contain the various

plots discussed in the last chapter. The other menu items will be

discussed further in later chapters.

E DESK ACCESSORIES.

There is a special pull down menu located on the left side of the

menu bar. The apple symbol is the title for the desk accessories or

DAs. The apple menu will always be available, regardless of which

application you may be presently running. The items available are like

small applications that can run from within the main application. An

example of a DA is 'Control Panel' which can be used to change various

characteristics of the desktop display, keyboard or mouse operations.

Another example is 'MockWrite' which is a small word processor. A

variety of calculators are also available. DAs are stored in the system

17

www.manaraa.com

file3 rather then the disk containing the application you are running.

With DAs you can copy and transport text or graphic displays of nearly

anything that appears on the screen for use in other applications. For

example, you may want to include a copy of the Bode plot from

MacCAD in a lab writeup you are doing with a Macintosh word

processor application. This can be done with DAs.4

F. KEYBOARD.

Most information in the form of data or text is entered through

the keyboard. The Macintosh keyboard is very similar to the basic

type writer with the addition of just a few extra keys. 5 The return

key, on the right tells the computer that the data just typed in should

be accepted now. It may also imply motion after entering the data.

For example, after typing in a line of text in a word processor,

hitting return causes a carriage return and a line feed. The Enter key,

located in the lower right, is similar to the return in that it enters

data but usually does not imply any motion. For MacCAD, both keys

will function the same by entering data. Motion as mentioned above

will not apply to any input for MacCAD. The option keys in the lower

left and right corners are not used in MacCAD. The tab key is used to

move between data input points for entering data. This will be

3 See Macintosh Users Guide for information on System, Finder

and startup disk.

4 See Macintosh Users Guide for information on Clipboard,

Scrapbook, Edit menu items and function keys 3 and 4.

5 For basic Macintosh. The Mac Plus and SE have several

additional keys.

18

www.manaraa.com

further explained in the next section. This key lets you move from

one point to another for adding data or changing data already there. It

does not actually enter the data. Only the return or enter keys signal

the Macintosh that the data input is complete and should be accepted.

G. DIALOG BOXES.

When the Macintosh requires information from you, it will

display a dialog box like the one shown in Fig(1). It will tell you

exactly what data is needed and shows you where to enter it. Data

insertion points are small boxes in the dialog box that let you type

in numbers or text. There are usually several such insertion points in

each dialog box. The tab key lets you move from one point to another

to enter data. Usually there will already be data in an insertion point

box. This is the default data. You can change it if you want but you do

not have to. For example, when creating a Bode plot for your system,

a dialog box will ask, among other things, what will be the maximum

and minimum magnitude values that should be displayed. The values

are in decibels and the default values are -40 to 40. Although this

range may never have to be changed, there may be conditions where

you want to see much higher or much lower values. You can enter

what ever values you want and they will become the new default

values for any subsequent Bode plots you will make.

Data insertion boxes can also be selected by pointing and

clicking with the mouse. Clicking the mouse between two characters

in the box will let you insert characters between them. Double

clicking a box will highlight the entire number or an entire word if

19

www.manaraa.com

text is entered. 6 You can also select all or portions of numbers or

text by dragging the mouse across the text you want to select. When

all or part of text is selected, it will be highlighted. It can be

removed by using the delete or backspace key or it can be replaced

by typing in whatever you want.

Input the Bode Plot data. OK

Input frequencies in integer powers of Cancel
10 and magnitudes in integers. (dB)

Min Freq 1 o Ma IPH Freq 10

Min Magnitude

Ma« Magnitude

-40

40

dB

dB

Include Phase Plot In Display (V or N)

Fig(1) Sample Dialog Box

After all data in the insertion boxes is correct, you can enter the

data by hitting the return or enter key or by clicking the OK button. In

the Bode dialog box, the OK button is the default button because it

has a heavy outline. Hitting enter or return is the same as clicking

the default button. If you click on Cancel, any changes to the data in

6 Refer to the Macintosh Users Guide for information on text

selection and insertion points.

20

www.manaraa.com

the insertion boxes will not be saved and the operation which called

the dialog box will be canceled. Some dialog boxes offer a variety of

buttons for your selection. The one that will most often be used will

be the default button and will have the heavy outline. The default

button can be selected quickly by hitting return or enter from the

keyboard or as any other button, it can be selected with the mouse.

If you type in data that does not apply to it's insertion box, such

as typing in letters in the Bode magnitude boxes, the dialog box will

not disappear when you hit the OK button. Any insertion boxes that

have incorrect data in them will become framed and you will have to

correct the data before it will be accepted.

An Alert box is similar to a Dialog box but it does not have any

insertion boxes though it may have one or more buttons. Alert boxes

are used primarily to notify the user of some condition or to get a

simple response like Yes or No from the user. Fig(2) shows an alert

box from MacCAD that tells you that a block cannot be deleted from

the system because no blocks have been entered yet.

OK

There are no blocks in the

system.

IHIIMIMIIfVflffflPlfl

Fig(2) Sample Alert Box

21

www.manaraa.com

In this case, you are not required to enter any data, just

acknowledge that you understand. Alert boxes are used to give the

user a second chance to change his mind before doing something to

make sure that it is what he really wants to do. For example, after

throwing an application away7 you will see an alert box that asks

if you are sure that you want to erase that application from your

disk.

H. BASIC PRINTING.

There are a few ways to get a printed output. One way is to

select the print menu item from the File menu. You will be presented

with dialog boxes so you can select how the data will be printed. You

can also do a 'screen dump' which will print the contents of the the

active window immediately. This is done by holding the command key

and the shift keys down and then typing the number '4'. This is a fast

way to get printed output of a plot in MacCAD. If the Caps Lock is

down, doing the same thing will cause a printout of the entire

screen. You can create a MacPaint8 document by pressing the

command and shift keys and typing the number 3. You can take up to

10 of these 'snapshots' and can then alter them with MacPaint for

transferring to a word processor for a lab writeup.

7 Dragging it into the trash on the desktop.

8 An application by Apple for drawing graphics images such as

block diagrams.

22

www.manaraa.com

I. SUMMARY.

A great deal of information has been quickly provided in this

chapter. It is highly recommended that the Apple Macintosh User's

Guide be read for further clarification of the material presented

here in addition to many other features that were not mentioned.

23

www.manaraa.com

III. STANDARD MACINTOSH MENUS

A. BASIC DESCRIPTION.

As with nearly all programs written for the Macintosh, MacCAD

uses the three standard menus: the apple, File and Edit. This is done

for two basic purposes. The first is in order to follow the standard

Macintosh programming philosophy, as discussed in the first chapter.

This allows the experienced user to easily adapt to a new program

since many of the operations are already familiar. The second reason

is to allow for easy interaction with various other programs and

desk accessories. For example, a desk accessory called 'MockWrite'

which allows the user to do basic word processing while within

another program also uses the edit menu in MacCAD. In addition, the

clipboard and scrapbook use the edit menu. These allow the user to

transfer graphics generated by MacCAD into other applications.

B. APPLE MENU.

As mentioned in the first chapter, the apple menu, identified by

a small apple in the top left corner, is used primarily for desk

accessories. It is also used by most programs as a way of offering

program information or on-line help to the user. This is usually the

first item of the apple menu.

Some programs, like 'Switcher', which allows the user to run

two programs at the same time, also use the apple menu by

24

www.manaraa.com

appending additional menu items that let you control their operation.

MacCAD works well under 'Switcher' if you set the memory size to at

least 256 K by using the 'Configure then install..' item under the

'Switcher' menu. The apple menu is also used by apple's 'Multi Finder'

which also allows more than one program to be run at once.

C. FILE MENU.

Most programs offer basically the same items under the 'File'

menu. MacCAD offers New, Open, Save, Save As, Print and Quit. The

Open, Print and Quit selections also have a keyboard shortcut by

holding down the command key, which has a clover leaf symbol on it,

at the same time as hitting the first letter of the menu item.

1. New

Selecting New causes the dialog box shown in Fig(1) to be

displayed.

A Do Not Lose Present Data.

Define New System

Defining a new system will cause all the present

block data to be lost. Haue you saued your data?

Fig(1) New Menu Item Dialog Box.

25

www.manaraa.com

This is a warning to the user that starting a new system

will cause the present System block data to be lost. The default

selection is the top button which cancels the request. This allows

the user to save his present data before starting a new problem.

Selecting the lower button 'Define New System' will automatically

call the 'Block' menu item 'Add New Block' and you are ready to start

inputting the new block data. Any plots that had been drawn are not

lost. This allows the user to overlap plots from two different files.

The plots cannot be displayed however until at least one block has

been entered into the new System block.

2. Open

The 'Open' item allows the user to load data into the System

block that has been previously saved to a file. After selecting 'Open'

a dialog box is displayed as in Fig(2).

Si example files

D 2nd Order System
D 4th ord real roots

D expanded
D EHPO COS

D EHPO DECflV

D Thaler 5th order system

D Unity function

D unstable

O

Hard-Start

(:j<a< *

Brtoe

Open

Cancel

Fig(2) Open Dialog Box.

26

www.manaraa.com

This allows the user to select the file to be loaded. Only MacCAD

files and folders are displayed in the list box. By clicking on the box

that says 'example files' you can move around within the HFS 1

system. Selecting 'Eject' or 'Drive' causes the current disk to be

ejected, if a floppy, or the disk drive to be rotated. 'Open' causes the

selected folder to be opened or the selected MacCAD document to be

loaded. This is also done by double clicking on the selection. Cancel

stops the operation and the alert box of Fig(3) is displayed.

A OK

fin error occured while

loading the selected file. No
file has been opened.

Fig(3) Canceling The Open Command.

This only tells the user that a file has not been loaded. If a

file had been selected by double clicking or clicking the 'Open' button

and the alert box of Fig(3) was displayed, it means that there was an

error and the selected file was not loaded. This should never happen

because the only files that can be selected are MacCAD files but if

the selected file had been damaged in some way and was not loaded

1 HFS - Hierarchical File System. Used on Mac Enhanced, Mac
Plus or later models. Displays files and folders only in that folder

rather than in the entire disk.

27

www.manaraa.com

correctly, the user would know. When a new file is opened this way,

just as when 'New' is selected, all the previous data, except for the

plots, is lost. If the 'Cancel' button is hit, the alert box of Fig(3) wil

appear and the old data will still be loaded in the system. Before

opening a new file be sure any old data has been saved.

3. Save

The 'Save' menu item allows you to save data to a file. The

file created is a MacCAD file which can only be used by MacCAD. The

dialog box in Fig(4) will be displayed when saving a file.

SI example files

D 2nd Order System <l>

D <1H$ <u<i re<\\ ro<iH

D eKp<i«ded

D i:hi>o im
EKPD DECflV

D Thaler 5th order vi"* O

Hard-Start

Elect

Drive

Saue as which file? Saue

Cancel

Fig(4) Saving File Dialog Box.

This dialog box allows the user to select where the new file

will be located in the same manner as the file was searched for

when opening a file. The new file name is entered in the text box

near the bottom. Select a file name that has not yet been used. When

'OK' is selected, if the name has already been used the user will be

28

www.manaraa.com

asked if the new file being saved should replace the old file that

already has that name. If 'Yes' is selected, it will happen. If no is

selected, the dialog box will wait for the user to input another file

name. If a file has already been saved or was loaded using the 'Open'

item and 'Save' is selected, the original file that is located on the

disk will be updated to hold the data that is presently in the System

block. In this case, no dialog boxes will appear. Saving data is a good

practice since a system error could occur and any unsaved data

entered would be lost. As new data is entered it should be saved.

4. Save As

The 'Save As' item is very similar to the 'Save' in that the

same dialog boxes are displayed. This item allows the user to save the

present version of the System block as a different file. For example,

if a file called '2nd Order System' was loaded and changed by adding

another pole, it could now be 'Saved As' a file called '3rd Order

System.' The original '2nd Order System' is still on the disk and is

unchanged but a new file with the latest changes is now saved called

'3rd Order System.' This allows several versions to be saved, so the

user need not make the same changes over and over again.

5. Print

The print command allows the user to get a hard copy of any

plot displayed by MacCAD. The plot that is to be printed should be on

the front window of the display. After selecting 'Print' the dialog box

in Fig(5) is displayed. Under normal conditions, the paper selection

should be left at the default setting of 'US Letter'. The Orientation can

be set to be vertical (the default) or horizontal which prints the plot

29

www.manaraa.com

sideways. Under Special Effects, Tall Adjusted' should always be

selected when printing the Nyquist plot. Otherwise the plot is

decreased in width and becomes distorted. Circles on the plot will

appear as ovals. For any other plot, the difference is not noticeable.

Tall Adjusted is not applicable if the horizontal orientation is

selected. 50% Reduction causes the plot to be printed at half it's

normal size. This works for both orientations.

ImageLDriter v2.6

Paper: ® US Letter

OUS Legal

O Computer Paper

Orientation Special Effects:

^

OH4 Letter

O International Fanfold

^ Tall Adjusted
50 % Reduction
No Gaps Between Pages

OK

Cancel

Fig(5) Print Dialog Box.

After the proper parameters have been selected and the 'OK'

button is selected, the dialog box shown in Fig(6) is displayed.

Imageliiriter v2.6

Quality:

Page Range:

Copies:

Paper Feed:

OBest

®flll

(•) Faster

O From:

1

O Draft

To:

OK
i

Cancel

® Automatic O Hand Feed

Fig(6) Second Print Dialog Box.

30

www.manaraa.com

When printing graphics, 'Faster' is the same as 'Draft'.

Selecting 'Best' causes the plot to be double printed. This means the

picture is actually printed twice for each carriage return. The result

is a darker, higher quality print. The set back is that it takes almost

twice as long as the 'Faster' method. The number of copies of the

plot can also be set. The default is 1. The Paper Feed default is

'Automatic' which refers to the continuous traction feed paper. 'Hand

Feed' can also be selected for printing on other types of paper.

Before attempting this method, ensure the printer is properly set up

for friction feed.

6. Quit

The last item under the File menu is Quit. Selecting this

will cause you to leave MacCAD and return to the desk top. Any data

that was not saved when Quit was selected will be lost. You should

be sure to save your data before quitting.

D. EDIT MENU.

The edit menu is not directly used by MacCAD. It is included in

order to fully use various desk accessories. It also allows the user

to transfer text and graphics to and from the clip board. Since these

operations are not actually used in MacCAD, no further explanation

of the Edit menu will be presented here. Any additional information

regarding the edit menu can be found in the Macintosh Users Manual.

31

www.manaraa.com

E PROGRAMMER'S NOTES.

Files are read from and written to using the functions

'ReadData' and 'Write Data. 2 ' They read and write data in the form

of segments of data, identified by handles3 . These procedures

work very well with the data structures used in MacCAD since all

block and group data is also identified by handles. 'WriteData' reads

from an array of handles of the data segments called 'hltem'. Each

data segment is sequentially written to the destination file in the

same order as they are stored in the array. The order of the array is

very important. The association of a block to it's group and a group

to it's master block is contained in the order of the handles. This is

all handled by the procedure 'SaveSimpBlock'. When saving a file, it

is called using sysblockH4 as the input parameter. This block

handle is saved as the first handle in the array 'hltem'. The block's

subgroup is then set as the next element in the array. Each of the 5

blocks in that group are checked to see if they are 'used' and if so

they are saved as the next array element. This is continued until all

5 blocks are checked. At this time the procedure is done. If the

block was 'used', before it is added to the array, it is checked to

see if it had been simplified. If so, 'SaveSimpBlock' is called again,

from within itself, with the simplified block as it's parameter.

2 Programmer's Extender Vol 2 version 3.05 procedures.

3 Simply put, a handle is a pointer to a pointer. A pointer is the

memory location of an item of interest. A handle is, then, the

address of the memory location that holds the address of the

memory location of the segment of data of interest.

4 sysblockH is the handle to the system block.

32

www.manaraa.com

Each time a simplified block is found, the procedure is called again.

It will 'nest' itself as many times as there are layers of simplified

blocks within System block.

After all the blocks' handles have been entered into the array,

the procedure 'WriteData' is called. This procedure displays the

dialog box like that in Fig(4) for the determination of the new file

name and location. The same procedures are used for 'Save' and 'Save

As'. The only difference is with the SFReply variable, which contains

the file name, file type and other information. For 'Save As' and the

first 'Save' the SFReply field 'good' is set to false which tells

'WriteData' that a destination file has not yet been determined. In

this case, the dialog box is displayed. Otherwise, the file is saved to

the same file that it was opened from or last saved to.

Opening a file is done very much like saving a file but in reverse.

'ReadData' is called which displays the dialog box of Fig(2) asking

the user to select a file to open. Once selected, the file data is

loaded as segments of data identified by the handles in the 'hltem*

array. The first handle is always the handle to the System block. It

is first converted to a 'bksHdl', a handle to a block. 'sysblockH' is

then set to this handle. The procedure 'GetBlockGroup' is then called

with 'sysblockH' as it's parameter. It is known that each simplified

block in the array is followed by it's subgroup. The next handle in the

array is converted to a 'grpHdl', the handle to a group. The blocks

'subgrp', the handle to it's subgroup, is set equal to the second handle

in the array. The number of blocks used, in the group is determined

33

www.manaraa.com

by adding the 'fwdbks' and 'backbks', the number of forward and

feedback blocks in the group to get 'numbks', the number of blocks in

the group. The next 'numbks' of items in the array are the blocks

making up that subgroup. As each is loaded, it is also checked to see

if it has been simplified. If so, 'GetBlockGroup' is called from within

itself, and the process is repeated. This procedure repeats itself

until all the blocks and groups identified by the handles in the array

have been loaded.

When 'New' is selected from the 'File' menu, the procedure

'InitBks' from the 'CAD SetUp' module is called. This changes the

System group 'fwdbks' and 'backbks' to zero and all the blocks in the

group to 'noblock'. 'noblock' is a block that is 'unused', not simplified

and has 'no block' for a title.

Selecting 'Print* from the 'File' menu calls the procedure

'DoPrintMenu' from the 'CAD Print Menu' module. This procedure calls

'PrOpen' which initialized the printer manager. A new print record is

allocated as 'printH' from the function 'NewPrintHandle'. 'PrStlDialog'

and 'PrJobDialog' are each called to display the two print dialog

boxes shown in Fig(5) and Fig(6).

If 'OK' is selected in both dialog boxes, the function 'PrintWPic'

is called which prints the picture associated with a window, whose

handle is input as a parameter. The window that is to be printed is

determined from the function 'FrontWindow'. If no window is

presently displayed on the screen, neither dialog box will be

displayed. Instead, an alert box will instruct the user that a window

must be displayed in order to print.

34

www.manaraa.com

When 'Quit' is selected, the program is terminated simply by

falling out of the bottom of the main program loop.

G USERS' TIPS.

When ever opening a new file, check the system block data to

ensure numerator and denominator orders are as expected. Particularly

when running under the program Switcher, errors can occur when

loading file information that goes unnoticed. If the orders are very

large or not as expected, try opening the file again. It should work the

second time even if it didn't the first.

Saving data as it is being entered cannot be stressed too much.

Probably 99% of all experienced computer users have learned this

lesson all too painfully after losing hours, maybe days of work

because of a system error that wasn't even their fault. Saving the

data takes only a second and can be done at any time other than when

a dialog box is displayed. The most likely place that a system error

would occur is during printing or calculating a new plot. Although no

system errors have been noted when running MacCAD by itself, a quick

'Save' is still a good idea.

Save every version of your system. As each significant change is

made, use 'Save As' to save that version. Sure enough, if you don't,

you will later need to load it again. Even large files created by

MacCAD are only about 5 K in size so several files can be made

without taking up much room. A 400 K disk with a copy of MacCAD

still has enough room for over 50 files. The title of each file is not

limited to the 5 or 8 figures that some computer operating systems

35

www.manaraa.com

require. The Macintosh will accept up to 31 letters or numbers for a

title. This means several similar versions can be saved while still

being distinguishable.

Each time 'New' or 'Open' is selected from the 'File' menu,

additional block data is added to memory. The old data is not erased.

This could only be a problem if 'New' or 'Open' has been selected

many many times
(
greater than about 20 for round numbers) and if

the Macintosh you are using has less than 1 meg of RAM or you are

operating under Switcher or MultiFinder. In all the testing to date,

this has not happened but to ensure it's prevention, after selecting

'New' or 'Open' about 20 times, it would be good to find a convenient

time to quit from MacCAD and run it again. This erases all the

memory containing the old data that is not in use any longer,

preventing you from ever running out of memory.

When printing the Nyquist plot, be sure to select 'Tall Adjusted'

from the first print dialog box shown in Fig(5). This will ensure the

circles will all be round. For all other plots, it may be convenient to

not select it as it will leave a larger margin for additional notes

after printing.

A fast though not high quality print out of a plot can be obtained

by a 'screen dump'. There are two ways this can be done. With the

caps lock key locked down, press the shift and command key while

pressing the number 4 key. This will cause the printer to print

everything that is displayed on the screen. It only takes a few

seconds. If the caps lock is not locked down and the same procedure

36

www.manaraa.com

is done, the active window will be printed. This means if two plot

windows are displayed on the screen, only the front or active

window will be printed. Unlike using the 'Print' menu item, the

window screen dump will not print the entire contents of the

window, only the part that is presently displayed. Again, this only

takes a few seconds and no dialog boxes are needed.

37

www.manaraa.com

IV. BLOCK MANIPULATOR

The capability of block manipulation is the heart of MacCAD. It

allows great flexibility in the entering, editing and simplification of

the transfer functions that describe the system.

A. BLOCKS AND GROUPS.

Data is stored in the form of blocks and groups. A block is as it

appears in a block diagram, a single element in the entire system.

Just as a Naval Task Force might be made up of a number of ships, a

group is made up of a number of blocks. A block contains a transfer

function in the 's' domain made up of a numerator and a denominator

with a maximum order of 10. Up to 5 blocks, in a loop path, make up

one group. The loop path can be an open loop, closed loop, forward

path or Geq. These will be discussed later in this chapter. The

number of blocks that form the group will also have an equivalent

transfer function, calculated in accordance with the loop path. The

equivalent transfer function of this group of blocks is stored in

another block. This block is called the System block. It contains the

equivalent transfer function of the whole system. The group that the

system block represents is the System group. Fig(1) shows a typical

block diagram of a system to analyze.

38

www.manaraa.com

R n BLOCK BLOCK BLOCK C

\ ONE 1 WU THREE

BLOCK BLOCK
FOUR - IVE

Fig(1) Basic Block Diagram.

These blocks are again shown in Fig(2) as related to the System

block and System group.

//

BLOCK
ONE

BLOCK
TWO

SYSTEM
BLOCK +— f SYSTEM ^T_

l^ group r~
BLOCK
THREE

V
BLOCK
FOUR

BLOCK
FIVE

Fig(2) Relationship Between Blocks, System Group and System Block.

Just as the system block is the simplification of the five blocks

in the system, any one of those five blocks might be the

39

www.manaraa.com

simplification of yet another group of up to 5 blocks. Using the

example started in chapter one, the weapon fire control system, we

may want to include the radar in the description of the system. The

transmitter, receiver and antenna would all have their own transfer

functions to add to the entire system. The radar transfer functions

could be simplified into a group which is represented by block three.

Fig(3) shows how this 'tree' of blocks and groups can work.

*•}

BLOCK
ONE

/

RADAR
TRANS.

BLOCK
TWO

SYSTEM
BLOCK

f SYSTEM ^T
* ^ GROUP J*~

BLOCK
THREE

f RADAR "V*~
[^ GROUP J*~

RADAR
REC.

V \BLOCK
FOUR

RADAR
ANT.

BLOCK
FIVE

Fig(3) Example of Simplification within the System Group.

Any of the blocks in the original group or in the new radar group

could also be simplifications of other groups of blocks. The

combinations are endless.

40

www.manaraa.com

B. PROGRAMMER'S NOTE: BLOCK AND GROUP DATA TYPES.

In order to allow maximum flexibility in the number of blocks in

groups, their editing, additions and deletions, related blocks and

groups are connected by handles
(pointers to pointers). For

example, block three in Fig(3) will have a handle to System group

because it is a member, as well as a handle to radar group because it

is the simplification of the radar group. Likewise, each group has

handles to the blocks that it contains as well as a handle to the

block that is it's simplification. This may sound redundant at first

but it allows you to move from any block to any related group and

vice versa. Rather than allocate memory for a set number of groups

or blocks this method allows greater flexibility.

Each block contains a transfer function stored as a numerator and

denominator in a coefficient form. MacCAD stores polynomials as two

possible variable record types. PolyCoef is the variable used to store a

polynomial in it's coefficient form. PolyFact stores the polynomial in

it's factored form. Both PolyCoef and PolyFact have a field 'degree' for

the polynomial order, 'gain' for the multiplier of the whole polynomial

and an array of coefficients or 'complex' numbers to describe the

equation. The variable type 'complex' is a record of the fields

'realpart', for the real part of a complex pair and 'imagpart' for the

imaginary part. There is also a boolean expression 'justreal' that, if

true, means the 'complex' variable represents only one real number. If

'justreal' is false, the 'complex' variable represents a pair of complex

conjugates in the form of 'realpart'+/-J*'imagpart'.

41

www.manaraa.com

As mentioned earlier, blocks store their information in PolyCoef

form but the data can also be entered or displayed in PolyFact form.

This requires the use of a subroutine called RootFinder which solves

for the roots of the coefficient polynomial and stores them in a

factored polynomial. The block data structure is shown below:

block = record

title:string[16];

used:boolean;

changed:boolean;

num:polycoef;

den:polycoef;

factored:boolean;

forward:boolean;

simplified:boolean;

simpform:1 ..4;

subgrp:grpHdl;

fromgrpHdhgrpHdl
end;

'title' is a string of text input by the user to identify the block,

'used' is true if this block contains system data and false if the

block has been deleted or has not yet been used, 'changed' is a flag

used for recalculating group equivalent transfer functions if

anything in the block has been changed, 'num' and 'den' are the

transfer function numerator and denominator respectively, 'factored'

is a flag used to show if the polynomials were originally entered in

factored form, 'forward' is true if the block is in the forward path of

the group loop, and false if it is in the feedback path, 'simplified' is

true if the block is the simplified result of a group of other blocks.

If it is simplified, 'simpform' shows the type of loop describing the

42

www.manaraa.com

group, 'subgrp' is the handle to the group that the block is simplified

from. 'fromgrpHdl' is a handle to the group that this block is a

member of. The group data structure is:

group = record

ownHdkgrpHdl;
maingrp:boolean;

masterblock:bksHdl;

fwdbks:integer;

backbks:integer;

bksused:array[1..5] of bksHdl;

posFback:boolean;

end;

'ownHdl' is the handle to that group. It is used when adding blocks

so they know where their 'group' is located, 'maingrp' is true if the

group is the system group, 'masterblock' is the handle to the block

that is it's simplification, 'fwdbks' and 'backbks' are the number of

blocks in the forward and feedback paths, 'bksused' is an array of

pointers to the blocks in the group. 'posFback' is true if the system

has positive feedback and false if it has negative feedback.

C. ENTERING DATA.

The tools of the block manipulator are in the Blocks pull down

menu. They include Change, Add New Block, Simplify and Delete Block.

Data in the form of transfer functions can be entered either in

coefficient form or in factored form by selecting Add A Block from

the Blocks menu. Presently the program can display and input

polynomials up to 10th order although the data structures and

subroutines have been written to handle 19th order. This limitation is

43

www.manaraa.com

due to screen size when entering large polynomials. Expansion to

completely handle 19th order equations would not be difficult if it

was determined necessary.

1. Loop Path

When adding the first block, the loop path for the group is also

set. The block is identified as a forward block (in the forward path) or

a back block (in the feedback path). Loop paths are defined as one of

four possibilities: Forward Path, Open Loop, Closed Loop and Geq. The

loop paths are defined in terms of 'G', the product of the forward blocks

and 'H\ the product of the back blocks. The default loop path is Geq.

Forward Path is defined as 'G'. No feedback of any kind is

used. Any back blocks in the system have no effect for this loop path.

Open Loop is the 'G H' product which is the product of all the

blocks in the group. It should be noted that the output, therefore, is

not taken at the output of the forward block in the farthest right

position of the loop as is normally the case. It is taken at the output

of the back block in the farthest left position in the loop. The loop is

not connected and no feedback actually takes place. This basically

lets you observe the signal that would be fed back to the summing

junction for the determination of the error signal.

Geq is in the form of Geq = G/(1 + GH) with G and H defined

as above. If there are no back blocks in the system, H defaults to

zero. In this loop path, the loop is closed only if there is at least one

block in the feedback path. If there are no feedback blocks, Geq is

the same as Forward Path. Geq is the default loop path.

44

www.manaraa.com

The Closed Loop path is equal to Geq/(1 + Geq) with Geq

defined as above. This is the same as the Geq loop path with unity

feedback added. It allows a system with feedback compensation to

also have unity feedback. If the system has no back blocks, H still

defaults to unity so the total system will then have two unity

feedback paths, or an effective feedback of H = 2.0.

D. DISPLAYING BLOCK DATA FOR CHANGING.

After data has been entered, it may be examined at any time. The

default display for polynomial data is the coefficient form but any

block can be viewed in either form. It should be noted that displaying

a polynomial in the factored format requires the roots of the

coefficient polynomial to be solved. If it is desired only to observe

the roots and not change them, the Cancel button of the dialog box

should be clicked. This prevents roundoff error from entering into

the original polynomial. If the OK button is clicked, the root values

are multiplied to get back to the coefficient form. It can be seen

that there are two chances for roundoff error if the OK button is

selected. For this reason, the OK button should only be clicked if the

roots have been changed.

Selecting 'Change' from the Blocks menu allows you to change any

part of any block presently in the system group, either directly or

indirectly as a part of a simplified group. In order to select which

block to change, you are given the choice as to view the system as a

group, which allows you to select which block to look at, or you can

see the entire system transfer function as one block. With the former,

45

www.manaraa.com

you can make changes to blocks presently in the system or add more.

With the later, you can only view the system equivalent transfer

function, no changes can be made. When viewing the blocks of a group

you also have the option to make other changes. You can change the

type of feedback, the loop path or you can add another block to the

group. When viewing the system as a group of blocks you can view the

data in any block and if one of the blocks was simplified from another

group of blocks, you can again look at that group as either one

simplified block or as the group of blocks that made it. If you look at

it as one simplified block, you can make changes to that equivalent

block transfer function even though the blocks of the group that made

that block were not changed. The system transfer function in System

Block will then reflect the changes in the simplified block. The block

can be restored to it's original value by viewing one of that block's

group of blocks and selecting the OK button, even though you made no

changes. This tells MacCAD to recalculate all groups and blocks that

require updating.

Blocks are deleted from the system by selecting Delete from the

Blocks menu. A block is selected in the same was as when changing a

block. Deleting any block will change the equivalent transfer

function of the group that it was from. You can still choose to view a

group as one simplified block rather than as all of the blocks that

made up the group. If you choose this block to delete, all of the

blocks that were simplified will also be deleted. This cannot be done

with System Block however. After selecting the block to delete, you

are given an alert box asking if you are sure that you want to delete

46

www.manaraa.com

that block. The default response is No. If this is selected, no changes

will be made. If Yes is clicked, then the block will be permanently

deleted from the system. When asked for which block to delete, you

can also make any of the changes available when viewing blocks such

as change the feedback type or the loop path.

All the blocks that are presently in System Group can be

simplified into one block by selecting Simplify from the Blocks menu.

You can enter a title for the new simplified block. More blocks can

then be added to System Group, around the newly simplified block.

After more blocks are added, they can be simplified again. The only

limitation to the number of simplifications is that the order of the

numerator and denominator of System Block as mentioned earlier.

MacCAD will still calculate the transfer function in the System Block

if the order is higher than 10. It just cannot display the data in a

simplified block form. Plotting analysis may still be done on systems

with orders between 10 and 19 but this should be done with extreme

caution. Since MacCAD has not been updated to completely handle the

higher order equations, a system crash may occur.

E WEAPON FIRE CONTROL SYSTEM EXAMPLE.

Use of the block manipulator will be demonstrated by

considering the example in chapter one. This is a weapon fire control

system that attempts to move the barrel of the weapon so as to

follow the moving target. We will assume the weapon is mounted on a

rotating turret. We will consider only the rotational angle of the

47

www.manaraa.com

turret and not it's elevation. The target bearing will be the input to

our system in the form of an electric signal with an amplitude

proportionate to the angle 8 of the target position. This will be our

reference R. The angular position of the turret will be our controlled

output C. An armature-controlled dc motor will be used to position

the turret. An amplifier will compare the input R to the output C to

determine an error. This error will be amplified and used as the input

to the dc motor. The actual derivation of the motor equations will be

omitted here as they are not the point of this example. The final

equations will be used to set up our block diagram. The schematic

diagram for the dc motor is shown in Fig(4).

Ra
La

so

Fig(4) Armature-Controlled DC Motor.

The torque of the motor is proportional to the armature current

T-Kla.

The current is calculated by;

la = (Va - Vb)/(Ra + La s)

48

www.manaraa.com

where Vb is the back emf from the motor and

Vb-Kbde/dt or Vb(s) = Kb s8(s)

The torque is applied to the inertia and friction so

T = J d29/dt
2 + f de/dt or T(s) = Js2 +fs

Using these equations, the block diagram for the motor is shown

in Fig(5).

Ea

o—

Eb

1

La s + Ra

la

K

s(Js + f)

Kb s

e

Fig(5) Block Diagram for DC Motor.

The input voltage Ea is actually the error between the turret

position and the actual direction of the target. Adding the feedback

and the amplification gives the final block diagram in Fig(6).

We will now use the MacCAD Blocks menu items to input and

check the fire control system. For the purpose of illustration, the

following values will be used.

Ra=100, La =.01, J = 250, f = 10, K = 100, Kb = 2, amp gain = 12.

49

www.manaraa.com

With this particular block diagram, the blocks can be entered

directly into the system. A later example will show how initial

changes would have to be made. The transfer functions are input

starting from the innermost loop. After starting MacCAD, the Add A

Block item is selected from the Blocks menu. Fig(7) shows the dialog

box presented.

Amp

Ea
1

La s + Ra

la

K

s(Js + f)

9

Eb

Kb s

Fig(6) Final Block Diagram for Fire Control System.

Note the default settings of forward and coefficient form. As

blocks are added, the default title starts at 'Block One' and

increases. It is advisable to change these titles because if two

blocks are entered and the first is deleted, the next time Add A

Block is called, the default title will be 'Block Two' again and both

blocks in the group will have the same title. A title and information

describing the top left block in the inner loop in Fig(6) is entered.

Before clicking OK, the dialog box looks like Fig(8).

50

www.manaraa.com

Add New Block Data

Block Title Block # 1

Numerator Order -

Denominator Order -

Forward Path (F)

Feedback Path (B)

Factored or Coefficient

form (F or C)

0-10

0-10

GD
Cancel

Fig(7) Add A Block Dialog Box.

Add New Block Data

Block Title Motor Circuit

Numerator Order -

Denominator Order -

Forward Path (F)

Feedback Path (B)

Factored or Coefficient

form (F or C)

GD
Cancel

Fig(8) Entering The First Block Data.

51

www.manaraa.com

After clicking OK the numerator data is entered as in Fig(9) and

the denominator data is also entered in Fig(10).

s**0

Numerator Data OK Cancel
J V 1

Gain Constant

1 1

Fig(9) Numerator Data Entered.

Denominator Data |_0K I

|

[Cancel

Gain Constant s**1 s**0

1 .01 1 ooj

Fig(10) Denominator Data Entered.

It should be noted that a Gain Constant is also input. This applies to

a constant that is multiplied by the whole polynomial. In this case it

is just 1. Since this was the first block entered, the loop path is

also requested in Fig(11).

For the inner loop, Geq is needed so the default is selected. The

next block in the inner loop is entered in the same way. In this block,

the denominator is second order but it of type one. Note how the

denominator values are entered in Fig(12). In this case, you could have

divided the J value of 250 from the equation and entered the 250 as a

gain constant. The s2 coefficient would then be 1.0 and the s

52

www.manaraa.com

coefficient would be f/J or 0.04. The inner loop feedback block is now

entered as in Fig(13) in the same manner as the others. In this case,

the denominator order is and the block is in the feedback path.

Main System

How do you want the group

simplified to a block?

fGeq = (G/1+GH)
J- 1

Forward Path = (G)
L J

[open Loop = (GH)

f —
-i

Closed Loop =(Geq/1+Geq)

Fig(11) Requesting The Loop Path.

Denominator Data OK]| Cancel

Gain Constant

h.00000000004

s**2 s**1 s**0

250.00000000 10.000000000 0.0000000000 .

Fig(12) 'System Load' Block Denominator Data.

53

www.manaraa.com

Rdd New Block Data

Block Title Uelocity F-Back

GD
Numerator Order -

Denominator Order -

Forward Path (F)

Feedback Path (B)

Factored or Coefficient

form (F or C)

1

Cancel

Fig(13) Entering The Velocity Feedback Block.

The data is entered in the same manner as the others but since

this is the first back block in this group, the type of feedback must

be determined. The default, Negative, is selected as in Fig(14).

What type of feedback
for this group?

Negatiue Positiue

Fig(14) Feedback Type Determination.

All the blocks in the inner loop have been entered and they can

be viewed or changed as need be. To select a block to view, 'Change'

54

www.manaraa.com

is selected from the Blocks menu. The group or block dialog box is

shown in Fig(15).

Main System

Display the simplified block

data or list the blocks in the

group that made it?

Group Data Block Data

Fig(15) Group Data or Simplified Block Data Selection.

We want to look at the block that describes the motor

characteristics so we select the default for Group Data. Fig(16)

shows the dialog box which displays the blocks presently in the

group.

The block titles are listed in two columns with the forward

blocks in the left column and the back blocks on the right. The

feedback type and loop path are also shown and can be changed by

clicking on those buttons. A new block can also be added to the group

by clicking on that button. The default is Cancel but we want to look

at the Motor Circuit block. In the upper left corner, the title of the

group we are looking at is displayed. In this case it is System Group.

55

www.manaraa.com

Change from System Group Cancel

Forward Path

Motor Circuit

System Load

Feedback Path

[Uelocity]

Type

sim

e of feedback - f_Nj

plification form [Geq)
Rdd a new block

Fig(16) Selecting The Block To View.

Clicking on 'Motor Circuit' will display the same dialog boxes as

Fig(8) through (10). Any of the data can be changed and saved if the

OK button is pressed. We can also see the equivalent transfer

function of all the blocks entered. This is done by selecting Change

again but clicking on the Block Data button in Fig(15). The dialog box

that describes the System Block is displayed in Fig(17). Note that

the denominator order is shown as 3 which is as expected. This time

we will view the polynomials in factored form. This will give us the

roots of the characteristic equation, the denominator of the System

Block. Fig(18) shows the numerator data. The numerator is zero

order so there are no roots.

56

www.manaraa.com

Edit Block Data

Block Title Main System

Numerator Order -

Denominator Order -

Forward Path (F)

Feedback Path (B)

Factored or Coefficient

form (F or C) i

GD
Cancel

Fig(17) System Block Data.

Numerator Data

The degree is
Gain Constant

100.000

GD
Cancel

Real Imaginary Real Imaginary

»

Fig(18) System Block Numerator.

57

www.manaraa.com

The denominator is third order so there should be three roots.

Fig(19) shows this. Complex numbers are listed in two sets of real

and imaginary columns. If there is a number in the real column but

nothing in the imaginary column, then there is a single real root at

that location. If there was a number in the imaginary column, then

the real and imaginary numbers represent a complex pair in the form

of Real +/- J Imaginary. These numbers might more accurately be

described as factors. A factored polynomial is in the form;

(s+factor1) (s+factor2) (s+factor3)

Denominator Data

The degree is 3 _3 Gilin Constant

I
OK

Cancel
i

[2.50000 I

maginaryReal I maginary Real I

9999.99

0.04800

0.00000

Fig(19) System Block Denominator.

Since all the denominator factors are real and positive, that

means all the roots are real and negative which indicates that

58

www.manaraa.com

there are no closed loop poles in the right hand plane for the inner

loop.

We are ready to enter the outer loop. To do this, the inner loop

must be simplified to one block. This is done by selecting Simplify

from the Blocks menu. Fig(20) shows the request for the name of

the new block. The three blocks input previously have been

simplified to one block called Motor/Load. By selecting Change

from the Blocks menu we would see that it is now the only block in

System Group. If we select this block for viewing, the dialog

shown in Fig(15) will again be presented because we have the

option to view Motor/Load as one simplified block or as a group of

blocks.

Input the name of the block that

thp nrnun is hpinn simnlifip.ri tn.

? ?

OK
Lv 1

Motor/Load^ Cancel
L J

Fig(20) Simplifying The Group.

The amplifier will be entered as a forward block of zero order

numerator and denominator. It will be entered the same as the

others and it will be called 'Amp.' We can view the blocks in System

Group. They are shown in Fig(21).

59

www.manaraa.com

This is a good time to check to make sure the proper feedback

and loop paths are set for the outer loop. Since there are no back

blocks in the system Geq must be changed to 'Closed Loop' in order to

have unity feedback. Clicking on 'Geq' displays the selection of loop

paths allowing 'Closed Loop' to be selected.

After checking the block values, we can see what the equivalent

transfer function in System Block looks like. We will do this as done

before and will observe the polynomials in factored form.

Change from System Group

Forward Path Feedback Path

Cancel

Motor/Load

Rmp

Type o

simpli

if feedback - fhT)

fication form [Geq

Rdd a new block

J

Fig(21) Viewing Complete System Group.

Fig(22) shows the denominator in factored form. The numerator

was still zero order which is as expected with unity feedback and

60

www.manaraa.com

the denominator is third order. This time the characteristic equation

has a pair of complex roots. They are all in the LHP but the real part

of the complex pair is small so stability may be questionable. We

can see how making a change to the Motor/Load block might affect

the System Group roots. We can change Motor/Load as a single block

rather than changing the blocks in it's group. This is done through the

following chain of events. Select Change from the Blocks menu.

Select Group Data for the blocks in System Group. Select the

Motor/Load block. This time select Block Data so Motor/Load will be

displayed as the equivalent block from the earlier simplification.

Denominator Data

The degree is 3

Real

9999.99

0.02399

Gain Constant

2.50000

Imaginary Real

0.21777

GD
Cancel

Imaginary

Fig(22) Denominator Of System Block.

61

www.manaraa.com

Enter 'F' for Factored or Coefficient Form when displaying the block

data as in Fig(8). Hit return when the numerator is displayed in

factored form because we want to change the denominator. Fig(19)

will again be displayed showing the factors. Change the .048 to .5 by

double clicking in it's box and typing in the new number. It will now

look like Fig(23).

By clicking on OK, the new roots are saved but the original

blocks that make up Motor/Load have not been changed. This means

we can return it to it's original values. Select Change again from the

Blocks menu but select Block Data in order to observe the equivalent

system transfer function. Enter 'F' for factored" form and see what

changes may have occurred to the characteristic equation.

Denominator Data
r ^

OK
L> 'J

The degree is 3 _3 Gain Constant

Cancel
[2.50000 1

maginaryReal 1 maginary Re»al 1

9999.99

-
0.50000

0.00000

Fig(23) Adjusted Motor/Load Denominator.

62

www.manaraa.com

Fig(24) shows the new denominator roots are all real and in the

left plane. These roots would appear to give a more stable system so

the changes made to Motor/Load were good. Now we must determine

what changes must be made to the blocks that make up Motor/Load.

This can be accomplished by using the Root Finder under the Tools

menu but that will be discussed in a later chapter. Motor/Load must

now be changed back so it accurately reflects the values from it's

blocks.

Denominator Data

The degree is 3
Jin Constant

i:
ok

Cancel
[2.50000 1

maginary

'.

Real 1 maginary Resal I

9999.99

:

0.12958

0.37040

Fig(24) Adjusted System Characteristic Equation Roots.

This is done by viewing any of it blocks and hitting 'enter' or

'return' on the keyboard as it is being displayed. It should be

displayed in coefficient form so no changes are actually taking

63

www.manaraa.com

place. OK is selected however, to tell MacCAD to recalculate the

values for Motor/Load and System Block.

Deleting a block is done much the same as viewing a blocks

contents. If we wanted to see how the system would work if there

was no amplification of the error signal, we could do this by

deleting the Amp block. Select Delete Block from the Blocks menu.

Fig(25) shows the dialog box showing the blocks that can be deleted.

CancelDelete from System Group

Forward Path Feedback Path

Motor/Load

fimp

Type of feedback -IN

simplification form [Geq J
Add a new block

Fig(25) Deleting Block From System Group.

The dialog is the same format as the 'Change' dialog except it

says 'Delete' in the upper left corner. You can also make the feedback

and loop path changes or even add a new block as you can in the

64

www.manaraa.com

Change dialog. If you do not notice the word 'Delete* in the left

corner and think you are going to view the contents of a block and

select a block that you did not want do delete, you will be

questioned by the alert box shown in Fig(26). In this case, we do

want to delete 'Amp' so the 'Yes. Do it.' button is selected. Selecting

Change again and viewing the Group Data shows that 'Amp' has been

removed. The resulting system characteristic equation is checked

and is shown in Fig(27).

A
> s

Don't do it.
"v 1

Rre you sure you want to delete

Rmp

r \

Ves. Do it.
L J

Fig(26) Safeguard Preventing Inadvertent Deletions.

We can see that removing the amplifier did not affect the real

part of the complex roots, just the imaginary part was decreased.

Various values for the amp gain can be tried and it is quickly seen

that increasing the gain increases the imaginary part of the complex

roots. Such trial and error calculations can be completed quickly.

In conclusion, all the system data is entered in as blocks. Groups

of the blocks can be simplified to a single block but the original

blocks are still in the system. They can be changed or deleted as

65

www.manaraa.com

need be. Feedback types, loop paths and gain constants can be easily

changed and the results observed.

Denominator Data

The degree is 3
Gain Constant

2.50000

Real Imaginary

9999.99

0.02399 0.05851

i
OK

Cancel

Real Imaginary

Fig(27) Characteristic Equation Roots Without 'Amp'

66

www.manaraa.com

V. BODE PLOT

A. BASIC DESCRIPTION.

The Bode Plot is probably the most useful, as well as most used,

single tool for system analysis. It displays graphically, the system

output magnitude and time delay as functions of the frequency of the

input. The output is the steady state response of the system due to a

constant amplitude sine wave of a given frequency. Magnitude is

plotted in decibels, or dBs from the equation:

Magnitude (dB) = 20 x Log(output/input)

Time delay is the difference between the positive zero crossing

of the input signal and the positive zero crossing of the output

signal. It is shown as phase in degrees with 360 degrees

representing the input signal's period. Since the steady state output

will always be of the same frequency as the input, their periods will

also be equal. If the output lags the input by an amount of time equal

to 1/4 the input signal's period, the phase will be 90 degrees, being

1/4 of 360 degrees. A time delay greater than the signal's period

would still be shown as some angle between and 360 degrees since

both signals are periodic and when dealing with steady state

responses, it is impossible to determine which individual input zero

crossing actually caused any specific output zero crossing.

67

www.manaraa.com

The Bode plot offers a wide variety of information to the user.

At a glance, it shows what frequency range will be passed or

attenuated by the given system. As in the case of a band pass filter,

it will show the pass band, the transition band, the corner

frequencies as well as the respective gains. The phase plot also

gives information regarding the phase margin and gain margin and

how stable the system is. With the basic knowledge of Bode plot

characteristics such as 20 dB/decade slope of the magnitude curve

and 45 degrees/decade slope for the phase curve from a single pole

or zero allows for easy approximations for compensators needed to

get the system to respond in the desired manner.

B. USER OPTIONS.

After transfer function data has been entered into the System

block, you are ready to calculate and display the Bode plot. Before

actually plotting the Bode data, you select from several options. A

brief description of the options follow. An example at the end of this

chapter will walk you through the use of the Bode plot tool.

You select the range of the magnitudes to be displayed by

inputting integers for the lowest and highest magnitude, in dBs. The

magnitude scale will appear on the left vertical axis of the plot.

There will be 6 or more divisions between the upper and lower

magnitude limits. The divisions will be calculated so as to always

evenly fall on whole numbers. Regardless of how the divisions are

displayed, a zero magnitude line will always be included. The solid

68

www.manaraa.com

horizontal lines correspond to the magnitude values on the left of

the plot. The dotted lines are for the phase curve. Fig(1) shows a

Bode plot for a simple system. The phase range of the plot will

always be from 0, at the top, to 360 at the bottom. These numbers

refer to the delay of the output compared to the input. The numbers

cannot be changed. As mentioned earlier, the dotted horizontal lines

correspond to the phase values on the right of the plot.

180

270

360
1000

Fig(1) Example Bode Plot Of Simple System.

The frequency of the input signal is shown on the horizontal axis

which is in a logarithmic scale. The solid vertical lines refer to the

frequency values. MacCAD allows the user to select the lowest and

highest frequency to display. This information is entered as integers

in the form of powers of 10. The thick line on the plot is the phase

curve and the thin line is the magnitude curve. You may also select

69

www.manaraa.com

not to display the phase curve. This can be of use particularly when

you want to display several curves at the same time and the

magnitude is of prime concern.

When 'Bode Plot' is selected from the Tools' menu, you also have

the options to cancel the operation, redraw the last plot displayed,

draw a new plot from scratch or to overlay a new plot on the last

plot. In addition, you may add title boxes anywhere in the Bode plot

window. You will be asked what text to display and the box size is

automatically calculated based on the number of lines you enter, and

the length of the longest line. You can add as many titles, or labels

as you want and you can put them anywhere. They will be drawn on

top of the Bode plot so they can be placed over a part of the plot grid

that is not used by the curves.

Multiple plots can be displayed by selecting 'Overlap Plots'. This

plots the current System block transfer function Bode plot on top of

the last plot displayed. In order to align the plots, the same phase,

magnitude and frequency limits are used as the last plot. The plots

can be differentiated by the pattern of the lines. As more plots are

overlapped, the lines become lighter so each pair of curves can still

be identified. As with any other window displayed on the Macintosh,

the Bode plot window can be moved, resized, scrolled, closed or

opened with a single mouse movement or a few key strokes.

C. PROGRAMMER'S NOTE. BODE DATA CALCULATION AND DISPLAY.

When the 'Bode Plot' tool is selected from the menu, the program

enters the 'Bode' unit and the 'DoBodeMenu' procedure until the entire

70

www.manaraa.com

plot has been calculated and the display is complete. The empty grid is

drawn using the 'DrawBasicPlot' and 'LabelPhase' procedures which use

data from the global 'BodeData' which contains the following fields.

BodeData = record;

minfreq : integer;

maxfreq : integer;

minmag : integer;

maxmag : integer;

layer : integer;

doit : boolean;

end;

The magnitude and frequency have already been explained. The

'layer' field shows the number of plots that have been displayed by

'Overlap Plot' and 'doit' is a boolean flag to show that through all the

dialog boxes requesting data from the user, he has not selected

cancel at any time.

When 'Bode Plot' is first selected, the user has the option to

redraw the last plot, draw a new plot, overlap plots or cancel the

operation. Redrawing the last plot is done by simply opening the Bode

window. Drawing a new plot is done by getting plot data from the user,

calculating the points and drawing the plot. Overlapping plots is done

by opening a temporary picture. The last window picture is first drawn

into it followed by the new magnitude and phase curves which are also

drawn into it using Quickdraw commands. The temporary picture is

closed and then set to be the window picture for the Bode window.

During program startup, the BodeData variables are initialized

to default values that are most likely to be used. Whenever the user

71

www.manaraa.com

to default values that are most likely to be used. Whenever the user

selects some other values for a display, they become the new

default values for the next time. The 'GetBodeData' procedure

displays the dialog box that asks the user for these values. The

default values are loaded into the data boxes by the 'InitBodeData'

procedure. Any inputs from the user are checked to ensure they are

integers and that they make sense. For example, if the maximum

magnitude was less than the minimum magnitude, an error would be

flagged using the 'GoodBodeDataEntered' procedure.

Once all the inputs from the user are completed, the plot must

be drawn. Horizontal and vertical positions on the plot are

calculated using functions that convert between frequency (for

horizontal) or magnitude (for vertical) values and actual pixel

numbers. The functions also use the global BodeData information.

These functions, Freq2Wd, Wd2Freq and Mag2Ht draw all the

horizontal and vertical lines used for the entire plot. The actual

curves are drawn by calculating a single point for the magnitude and

phase based on a frequency value in the procedure 'PlotMag'. The

actual operation of 'PlotMag' will be discussed in another chapter.

After each point location is determined, it is checked to see if it

lies within the plot boundaries. If it does, then a line is drawn from

the last point to the current one. Frequencies are selected to ensure

the horizontal length of any line drawn will not be greater than 3

pixels. This makes the overall curve actually look like a curve,

rather than a series of connected lines. In order to ensure that lines

such as the thick phase curve drawn close to the border of the plot

72

www.manaraa.com

do not go outside the boundaries, the window clipping region is set

to 'plotrect' which is the rectangle that defines the plot shape. After

the curves have been drawn, the clipping region is returned to the

full screen size to ensure proper scrolling and window sizing.

Titles are added by using the 'AddLabel' tool. This tool can be

used on any window containing a plot drawn by MacCAD. The user

enters text up to 255 characters per line and up to three lines. This

is done through a dialog box called by 'GetLabelData'. The size of the

label box is determined by the number of lines used and the length

of the longest line of text entered in pixels. After the text is

entered and the size of the label rectangle is determined, the

'DoLabelMenu' procedure waits in a 'while' loop for the user to press

the mouse button. When 'button' is true, a rectangle is drawn using

the PatXor penmode, with the mouse position being the top left

corner. When the mouse is moved, the last drawn rectangle is drawn

again which due to the PatXor mode, actually erases the last

rectangle and returns the display to what ever was under it before.

A new rectangle is also drawn. This is continued for as long as the

button is down. As soon as it is released, the last rectangle is

erased in the above manner and the actual label is drawn into a

picture called 'labelPic' using the 'DrawLabel' procedure. The user is

asked if he wants to save the label as shown by an alert box. If the

default Yes is selected, then the label picture is added to the

original window picture with the 'AddPic' function from the

Programmer's Extender library. 1 Because of the way pictures are

1 This library is described in the appendix.

73

www.manaraa.com

added or drawn together, as many labels can be made as desired,

just as with 'Overlap Plots'.

D. BAND PASS FILTER EXAMPLE.

In this example a band pass filter will be designed with a center

frequency at 10 Hz and a gain at that frequency of 20 dB. The only

other requirement on the filter is that a 1 dB pass band have a band

width of as close to 5 Hz as possible. The overlap capability will be

used to compare the magnitude frequency response after selecting

different transfer function values.

The second order band pass filter transfer function will be in

the form of:

H(S) = 2
K(wc/Q)j

s + (wc/Q)s + wc

Where ooc is the center frequency, Q is the quality factor and K

determines the gain at ooc. Q is used to describe the 'sharpness' of

the bandpass or the bandwidth. The bandwidth is the distance

between the half power points, or the points that are 3 dB below

the gain at wc. The bandwidth is related to wc and Q by the

equation:

bandwidth = ooc/Q

When ooc = 20, K can be calculated by;

gain(dB) = 20 Log(K) = 20dB or 1 = K

74

www.manaraa.com

The only variable to adjust is Q. Since we know that the half

power bandwidth will be greater than the 1 dB bandwidth, Q can not

be larger that 2. We will start with this value, check the Bode plot

and then make adjustments as necessary.

The system will be entered as a single block with the loop path

set to the default 'Geq' which will not add the feed back since there

are no back blocks in the System group. Fig(2) shows the numerator

data input.

This is entered as the gain constant. Eq1 shows the numerator

consists only of an 's' term with a coefficient = ooc/Q = 10/2 = 5.

This is input along with for the s^ term.

Numerator Data OK Cancel

Gain Constant s**1 s**0

10 5

Fig (2) Band Pass Filter Numerator With Q = 2.0

Fig(3) shows the data input for the denominator. Since there is

no gain constant in the denominator of eq1, 1.0 is entered in the gain

constant data box. The coefficient of the s^ term is also 1.0. The 's'

coefficient is ooc/Q = 10/5 = 2. The last term is ooc2 = 100. The loop

path is left to be 'Geq' again since there are no back blocks. 'Bode

Plot' is now selected from the Tools' menu. Fig(4) shows the dialog

box presented at this time.

75

www.manaraa.com

Denominator Data OK
J

Cancel

Gain Constant

1

s**2 s**1 s**0

1 5 1 ooj

Fig(3) Band Pass Filter Denominator With Q = 2.0

BODE PLOT SELECTIONS

I
Redraw Plot

Draw New Plot

Ouerlap Plots

Cancel

Fig(4) Bode Plot Tool Dialog Box.

This lets you select one of the options described earlier. Since

in most cases, you will wish to view the last plot drawn, 'Redraw' is

the default but if no plots have yet been drawn, selecting 'Redraw

Plot' would result in an alert box indicating that a plot has not yet

76

www.manaraa.com

been drawn. 'Overlap Plots' would do nothing for the same reason. In

this case we want to 'Draw New Plot.' The dialog box that inputs the

Bode data is shown in Fig(5). In our case, the default data should

work fine. We could change the magnitude values or the frequency

range or even prevent the phase curve from being drawn but all these

options will be used later. Right now we accept the default data.

Input the Bode Plot data. OK

Input frequencies in integer powers of Cancel
10 and magnitudes in integers. (dB) ^

Min Freq 1

Min Magnitude

Ma« Magnitude

Man Freq ,jp

-40

40

dB

dB

Include Phase Plot In Display (V or N)

Fig (5) Bode Data Dialog Box With Default Data.

After clicking 'OK' a notice is displayed on the screen stating

that the Bode data points are being calculated and we should be

patient. A counter is also shown that counts down the data points to

be calculated. After reaching zero, the Bode plot is drawn as in

Fig(6). Something interesting has occurred with the phase curve. It

77

www.manaraa.com

started at the bottom of the plot and then suddenly jumps to the top.

At first this could be confusing but it is correct. Since the phase is

plotted from to 360 degrees, a value of -90 would be plotted as

+270. The phase plot starts at the left at a value of 270 which is the

same as -90 or means the output leads the input by 90 degrees. This

makes sense since the numerator has a single 's' term, or in other

words, there is a 'zero' at where 'zero* means a root of the

numerator. Since the denominator has a nonzero s^ term, we know

that there is not a pole at to compensate the 'zero' there. As

frequency increases, the phase decreases to a lag situation. When

the phase moves from 359, a one degree lead, to 1, a one degree lag,

the phase plot moves abruptly from the bottom of the plot to the top.

4U

30

20

10

10

20

30

40

— ... •

...^^. —

/
<'"\

y €. ...
j"

" :

r
4*Z.

~j K"
*•

• }**?
^fc

=5*
%

•

-«!#-•

?!
.01 .1

•

10 00 1

u

90

180

270

360
1000

Fig(6) Original Band Pass Bode Plot.

Since the denominator is second order, we know that the system

will always be stable, regardless of the value of Q selected. If Q is

78

www.manaraa.com

very small, the 's' term will be very large and, as can be shown using

the 'Root Finder' tool, the real part of the complex roots, if they are

complex, will always be in the left hand plane. As Q approaches

infinity, the real part of the complex pair will approach zero from

the positive side, meaning the roots will again be in the left hand

plane. The rule of thumb is that for quadratics, if all the terms are

greater than zero, then all the roots will be in the left hand plane.

Since we no longer have to worry about the stability, the phase plot

is not of great concern to us. We can elect not to plot it. As for the

magnitude curve, it hit a peak at 20 dB at coc as expected but the

plot is too large to see the 1 dB bandwidth. We will draw a new plot

with the plot data changed as shown in Fig(7).

Input the Bode Plot data. OK

Input frequencies in integer powers of I cancel
10 and magnitudes in integers. (dB)

-2

Min Freq 10

Min Magnitude

Ma« Magnitude

Man Freq 1p
20

dB

dB

Include Phase Plot In Display (V or N) n|

Fig (7) Adjusted Bode Plot Data

79

www.manaraa.com

The frequency limits are not changed but the gain is changed to

go from to 20. This should better show the 1 dB bandwidth. It was

also decided not to display the phase curve so 'N' was entered in the

last data box. After 'OK' is selected and the 'Please be patient.' box

has disappeared, the new Bode plot looks like Fig(8).

.01

16

12

8

4

n

fr\

• '" '

—

* '"'' '**

"f
...«>-...

' '
"* '" " '

L.....

:=t: t

-P ^
Fig(8) Plot From Adjusted Bode Data.

100

o

90

180

270

360
1000

With the phase curve removed, the plot is much clearer and the

magnitude change also helped but it appears that we need to zoom in

even more. This time we will change the frequency limits to cover a

frequency range of 1 to 100, which in powers of 10 would mean we

input the numbers and 2 for the min and max frequency. We can

also adjust the magnitude limits to have a maximum of 20 and a

minimum of 15. This will clearly show both the 1 dB band width as

well as the half power band width.

80

www.manaraa.com

'Bode Plot' is again selected from the 'Tools' menu and 'Draw

New Plot* is also selected. The new bode data dialog box is shown in

Fig(9).

JLU

19

18

17

16

10

Fig(9) Bode Plot After Second Data Adjustment.

o

90

180

270

360
100

This plot clearly shows the 1 dB band width as well as the half

power band width. The 1 dB band width is much less than 5 Hz as it

is from about 9 Hz to about 11. This means we must decrease Q. We

can try Q = 1.0. This means that both the numerator and denominator

's' terms must now be 10.0 instead of 5.0 as before. The changes are

made to the system as described in the chapter covering the Block

Manipulator. This time since the Bode data displays the plot well, we

can 'Overlap Plots' in order to see how the changes in Q affect the

band widths. Fig(10) shows the plot after the overlapping.

The plot now shows magnitude curves for Q = 2.0 and 1.0 with

the lighter line being the later. The 1 dB band width now appears to

81

www.manaraa.com

extend from 8 Hz to about 13 Hz which is the required 5 Hz band

width. Now that we have the desired response displayed in the Bode

plot, we can add labels for identification.

20

19

18

17

16

15

w"5t

ff \\

-/-/ l\
1 1 \ X
f I T

:::::::?
i \ X

,:

j rr/-

/
i \ \t

90

180

270

360
10

Fig(10) Overlapped Bode Plot With New Q = 1 .0

100

A label on top should show that it is a Bode plot and identify

which curve has which Q value. This is done by selecting 'Add Label'

from the Tools menu while the bode plot is being displayed. Fig(11)

shows the 'Add Label' dialog box after we entered the labels we

want. After selecting 'OK' the Bode plot window is again displayed.

MacCAD now waits for the user to push the mouse button and then

draws a rectangle that is the size of the label about to be added. The

rectangle moves across the screen as the mouse is moved. This

allows the label to be placed where ever it is desired and fits. We

will place this label at the top of the plot. After releasing the

82

www.manaraa.com

button, the label is drawn at that location and the user is asked if he

wants to save the label as shown. This is shown in Fig(12).

label.

Label Rdder

Enter up to three lines of te«t for the

? s
n

OK
Jy -"j

Cancel

Bode Plot for Band Pass Filter

Dark => Q = 2.0

Light => Q = 1.0

Fig(11) Add Label Dialog Box For Top Label.

Bode Plot for Band Pass Filter
Dark => Q = 2.0
Light => Q = 10

JL\I

19

[

90

18

/ 180

17 /
j

i 270
16 /

JF

/
15 . 360

i i 00
Saue the label as shown? Ves No

i
3 m\ -..\':

. ::\: i

^
11IIII

Fig(12) Alert Box For Saving Label-

83

www.manaraa.com

We will save the label by selecting 'Yes'. We can add another

label showing the 1 dB band width corner frequencies. This is done in

the same matter as the first label. The second label data is shown in

Fig(13).

Label Adder

Enter up to three lines of te«t for the label.

OK

Cancel

1 dB band width

8 Hz - 13 Hz

Fig(13) Label Data For Second Label.

Since the first line entered was the longer of the two, a couple

spaces were added to the beginning of the second line so it would also

be centered. This is of course, not necessary and if not done with the

extra spaces would just show the second line start at the left

position like the first. The final Bode plot is shown in Fig(14).

In conclusion, the Bode Plot tool allows the magnitude and phase

curves to be plotted on one graph. The magnitude limits and frequency

range of the plot can be selected by the user. Displaying the phase

curve is also optional. An unlimited number of plots can be

84

www.manaraa.com

superimposed, or overlapped as well as an unlimited number of labels

added to the plot.

It must be remembered that any internal labels, within the plot

rectangle may be plotted over if 'Overlap Plots' is selected after the

labels are added.

20

19

18

17

16

15

Bode Plot for Band Pass Filter
Dark => Q = 2.0
Light => Q = 1.0

•f-

t i--V- 1 dB band width
8 Hz 13 Hz

/ v \

/j—

j

//

i-

90

180

270

360
10

Fig(14) Final Bode Plot.

100

To avoid this, wait till all the plots are displayed before adding

any internal labels. Centering text in the labels was also

demonstrated as being very easy. The 'Add Label' will work in the

exact same way for all the other plots and graphs generated by

MacCAD.

85

www.manaraa.com

VI. NYQU1ST PLOT

A. BASIC DESCRIPTION.

The Nyquist Polar Plot is very similar to the Bode Plot in that

the phase and gain of G(s) are displayed as functions of frequency.

The difference is that the Nyquist plot is in a polar coordinate

system where the Bode plot is in rectangular coordinates. In the

polar plot however, the response at any particular frequency is

shown as a vector with it's magnitude equal to the gain of G(s) and

an angle equal to the phase delay of G(s) at the same frequency.

Unlike the Bode Plot which calculates gain in decibels, the Nyquist

Plot shows gain simply as (output magnitude)/(input magnitude). The

phase delay is shown as the angle measured from the positive 'x'

axis, in a clockwise direction.

The system's stability can be measured by the gain and phase

margins. Phase margin can be determined from the Nyquist Plot by

noting where the plot crosses the unity magnitude circle. The angular

difference between the crossing point and the -180 degree radial is

the phase margin. This is automatically calculated for you by MacCAD.

The point where the plot crosses the -180 degree radial shows the

gain margin. Gain margin is defined as the reciprocal of the distance

from the origin to the -180 degree radial crossing. This quantity is

expressed in dBs as gain margin. This quantity is automatically

calculated for you by MacCAD and will be explained later.

86

www.manaraa.com

Another use for the Nyquist Plot however is to determine the

number of closed loop transfer function poles in the right hand side

of the 's' plane. This is done by determining the number of rotations

the trace makes around the (-1, 0) point on the plot. The number of

rotations, measured positive if in a clockwise direction, minus the

number of open loop poles in the right hand plane gives the number of

closed loop poles in the right hand plane. This is based on the

Principle of Argument which Kuo [Ref 1] states as follows.

Let A(s) be a single-valued rational function that is analytic

in a given region in the s-plane except at a finite number of

points. Suppose that an arbitrary closed path, r s is chosen in the

s-plane so that A(s) is analytic at every point on r s ; the

corresponding A(s) locus mapped in the A(s)-plane will encircle

the origin as many times as the difference between the number of

the zeros and the number of poles of A(s) that are encircled by

the s-plane locus r s .

If the closed path is chosen to cover the entire right hand s-

plane, then the number of zeros minus the number of poles of the

open loop transfer function that are in the right hand 's' plane will

be indicated by the number of clockwise trace rotations around the

origin. Since rotations around the origin are usually of infinitesimal

radius, they cannot be seen on a graph drawn to scale. They can

however be determined by viewing the Main System block data in

factored form. A quick example will show how this information can

be used.

87

www.manaraa.com

Given an open loop transfer function, G(s), which has a zero order

numerator and a second order denominator, the closed loop

characteristic polynomial can be written as 1 + G(s) which we will

call CP(s). Let Zo and Po be the number of open loop zeros and poles,

respectively, in the right hand plane. Let Zc and Pc be the number of

zeros and poles of CP(s) in the right hand plane. We know from

inspection that Po = Pc since any value of 's' that makes G(s) go to

infinity will also make 1+G(s) go to infinity. Let No be the number of

rotations around the origin in the clockwise direction, and Nc be the

rotations around the point (-1,0). If a Nyquist plot of our system

showed two rotations around the origin in a counter clockwise

direction, this would mean than No = -2. Since we knew there are no

open loop zeros in the right hand plane because the numerator is zero

order, then we would know that there must be 2 poles of G(s) in the

right hand plane. This is shown in the equation:

No = Zo - Po = -2 = - (2)

Let us say that there are also two counterclockwise rotations

around the point (-1,0). This means that Nc also equals -2. Since Po =

Pc, we know that Zo = since;

Nc = Zc - Pc = -2 = - (2)

By the definition of Zc, it means that there are no zeros of CP(s)

in the right hand plane. Remembering that CP(s) is the characteristic

88

www.manaraa.com

polynomial, and a zero for the characteristic polynomial is a pole for

the transfer function, we then know that there are no closed loop

poles in the right hand plane. Although this procedure seems

cumbersome, it can be handy for determining how close to

instability a system may be by counting the number of rotations

around the point (-1,0). An illustrative example later in this section

will show how this analysis tool can be used.

B. USER OPTIONS.

Data for the Nyquist Plot is calculated in much the same way as

for the Bode Plot. Many of the same options are available. The user

can select the maximum and minimum frequency for the

calculations. Unlike the Bode Plot, these frequencies are entered as

real numbers for the radial frequencies, rather than integers for

exponential powers. Being a polar plot, the only plot dimension

needed is the maximum radius. This is entered as any positive

integer. The number of points to plot can also be set. The default

value of 200 is usually sufficient for a smooth continuous curve but

under certain conditions you may prefer more or less. Like the Root

Locus, the Nyquist Plot also offers the option of Linear and

Logarithmic intervals when selecting the value of frequency for each

calculation. The advantages of either interval option is explained

further in the section covering the Root Locus plot. As a rule of

thumb, if you selected a wide frequency range, use the logarithmic

interval. If the high end of the frequency range is of most interest,

89

www.manaraa.com

use the Linear interval and if the low end is more important, use the

Logarithmic interval.

As mentioned earlier, MacCAD calculates the phase margin and

gain margin in the proper units for you. This information is displayed

in the data box appearing in the lower right hand corner of the

Nyquist Plot window. It also displays the input frequency and output

phase angle for the output magnitude values of .5, 1.0, 2.0 and 3.0

The method of these calculations will be discussed in the

Programmers' Notes of this section. It is assumed that the user can

recognize a non minimum phase transfer function and he will realize

that even though phase and gain margin data may still be displayed,

by definition they do not exist for non minimum phase systems and

cannot be used to determine stability in the same manner as with

minimum phase systems.

C. ILLUSTRATIVE EXAMPLE 1

.

The following single block transfer function will describe our

system for this example.

G(s)= fs + 2)

(s3 + 3s2 + 10)

Cascaded with this system is step adjustable amplifier with

settings of 0, 4, 8, 12, 16 ... The Nyquist plot will be used to

determine the lowest gain setting which will ensure closed loop

system stability. G(s) will be entered and the numerator gain

constant will be adjusted through the amplifier gains. This will

90

www.manaraa.com

illustrate the use of the Nyquist plot and the procedure mentioned

earlier in this section. We will first enter 4 for the amplifier gain

and draw the Nyquist Plot. After G(s) has been entered, we select

'Nyquist Plot' from the 'Tools' menu. Fig(1) shows the Nyquist Plot

dialog box.

NVQUIST PLOT SELECTIONS

>

—

i

—

Redraw Plot

—
-i

1

—-i

.

f
—

Dram New Plot
j

r
,.,._

L

Ouerlap Plots
-i

f

1

Cancel

Fig(1) Nyquist Plot Dialog Box.

Select 'Draw New Plot' since this is the first plot. You will then

see the dialog box of Fig(2). A smoother plot will be drawn if more

points are plotted or if a smaller frequency span is selected.

Plotting more points also increases the time required to do the plot

calculations. Since all the numbers in the transfer function are

between 1 and 10, it is a reasonable assumption that we do not need

to go all the way up to a maximum frequency of 1000 radians per

91

www.manaraa.com

second. In this case we will use 100 for the max and keep all the

other default settings. After entering our parameters, the dialog box

appears as in Fig(3). After selecting OK, a countdown alert box

shows the number of points to be calculated and then the plot is

displayed as in Fig(4).

Input Nyquist Plot Data
? S

1

OK
L̂ 1

Cancel

Man Plot Radius *

Min Freq (Rads/sec) 0.01000000

Ma« Freq (Rads/sec) 1000.00000

Points to plot 200 .

® Logarithmic Internal

O Linear Internal

Fig (2) New Plot Dialog Box.

92

www.manaraa.com

Input Nyquist Plot Data
? "s

1

OK
J- 1

Cancel

Man Plot Radius 5
:

Min Freq (Rads/sec) 0.01000000

Ma» Freq (Rads/sec) 1

Points to plot 200

® Logarithmic Internal

O Linear Interna!

Fig(3) Parameters Of First Plot.

270

Nyquist Plot
Amp Gain = 4.0

5

Phase Margin (deq) = -15.58

Mag Phase Freq

0.5 182.8 2.884

1.0 195.6 2.291

1.5 211.3 1.995

2.0 239.2 1 .738

Fig(4) First Plot.

93

www.manaraa.com

The direction of the rotation can be by examining the system

transfer function. If the system is type zero, the trace will start

from the degree radial direction. A type one system will start

from the -90 degree radial position, type two from the -180 degree

radial and so on. The trace will usually end up at the origin if the

max frequency is high enough. The direction that the trace

approaches the origin from can also be determined from the transfer

function. Subtracting the numerator order from the denominator

order will give a number that identifies the origin approaching

direction in the same way the system type identifies the starting

direction. Knowing the starting point and the ending point of the

trace will let you figure out the direction of rotation. Since the

points are calculated from the minimum frequency to the maximum

frequency, the rotation direction can also be determined by watching

the trace as it is drawn. If you missed it the first time, select

Nyquist Plot from the Tools menu again and select 'Redraw'. The

complete Nyquist plot would also cover negative frequencies but the

resulting plot is a mirror image of the positive frequency plot along

the horizontal, 'x' axis so it is not drawn.

We also notice from the data box in the lower right corner, that

when the magnitude is .5, the frequency is only 2.884. This means

that we can decrease our max frequency parameter from 100 to 10.

This will improve the accuracy and smoothness of the plot.

As mentioned earlier, the number of rotations around the origin

cannot be seen from the plot but the same information can be seen

94

www.manaraa.com

found from the original open loop transfer function. The first order

numerator (s+2) obviously does not contribute any zeros in the right

hand plane. The denominator (s^+3s2+10) can quickly be checked

using the Rootfinder tool. Fig(5) shows the result of using the

Rootfinder. It shows a complex pair in the right hand side. Since Zo =

and Po = 2 then No = -2. We can see from the Nyquist Plot in Fig(4)

that the (-1,0) point is not circled at all. This means that Nc = and

since we know;

Po = Pc = 2

we then know that Zc = 2. This tells us that CP(s) has two zeros in

the right hand plane so the closed loop transfer function has two

poles in the right hand plane making it unstable. This can be checked

by a variety of ways. The unit step response of the closed loop

system is shown in Fig(6).

The closed loop system is clearly unstable with a gain of 4.

Before changing the amp gain, the Nyquist plot can be drawn again

using a maximum frequency of 10 instead of 100 as mentioned

earlier. The plot does not appear very different so it is not

reproduced here but we know that the data box information will be

more accurate.

95

www.manaraa.com

RootFinder GD
Gain Constant

Real Imaginary

3.72189

-0.36094 1,59891

1.00000

Real

Cancel

Imaginary

* Input in form of (S + R+/- I)

Fig(5) Factored Open Loop Transfer Function Denominator.

Using the 'Blocks' item, 'Change', the amp gain is then increased

to 8. The Nyquist Plot Tool is again selected but this time 'Overlap

Plots' is selected. The same parameters are used as with the last

plot and the new one will be drawn on top of it. Fig(7) shows the

overlapped plots. The plot appears to be close to rotating around the

(-1,0) point but not quite. This can be checked by the data box which

shows the phase at the unity magnitude point to be 182.8 which

means it is not circled. It would have to be below 180 to indicate it

had been circled.

96

www.manaraa.com

20.0

12.0

4.0

-4.0

-12.0

Unit Step Response
Closed Loop System

-20.0

i 1 T 3 n n i i

a/g::::::~:::i:~:::::
^*vy*\aP,A tr_.j___m _..._.__.m tjt jJ V v\ tt..±

V

ft
L . u_jjj_u_.Il..l_.

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Time (sees)

Fig(6) Unit Step Response Of Closed Loop System With Gain = 4.0

270

Nyquist Plot
Dark to Light

Gain Stepped by 4

Phase Margin (deg) = -2.80

Mag Phase Freq

0.5 176.1 3.936

1.0 182.8 2.884

1.5 189.1 2.512

2.0 196.6 2.265

3.0 213.1 1.972

Fig(7) Overlapped Plots With Gain = 4 and 8.

97

www.manaraa.com

We now know that although close, the closed loop system will

still be unstable with the amp gain set at 8. Using the 'Blocks' item

'Change' again, the gain constant is increased to 12. Selecting

'Nyquist Plot' and the overlap option again gives the plot shown in

Fig(8). Here it appears that the (-1,0) point was circled this time

although it is still close. The data box confirms that it was

encircled because the phase is 177.5. The stability is again checked

using the Unit Step Time Response available under the 'Tools' menu.

Fig(9) shows the response to be stable but slow in decaying.

270

180

Nyquist Plot
Dark to Light

Gain Steppeo by 4

Phase Margin (deg) = 2.46

Mag Phase Freg

0.5 174.5 4.842

1.0 177.5 3.548

1.5 182.8 2.884

2.0 187.2 2.600

3.0 196.6 2.265

Fig(8) Overlapped Plots With Gain = 4, 8 and 12.

98

www.manaraa.com

This example has shown how to use the Jyquist Plot tool and has

shown the use of the 'Overlap Plots' option and how to determine

stability based on the Principle of Argument.

2.000

1.500

1.000

0.500

0.000

-0.500

-1 .000

-1.500

-2.000
0.0

Unit Step Response
Amp Gain = 12

AAA \ A A f\. y\ a. .

\\ \i\i\i\AA,ft AAA A/
f

V V V V V \J V i

V v

5.0 10.0 15.0

Time (sees)

20 25.0

Fig(9) Unit Step Response With Amp Gain = 12.

D. ILLUSTRATIVE EXAMPLE 2.

This will be a simple example using a minimum phase system

and examining the data box information. The Nyquist Plot will be

compared to the Bode Plot. The system has been entered and the

transfer function is;

10

s2 + 1.5 s + 4

This is a second order underdamped system with £ = .75 and uon

The Nyquist plot for this system is shown in Fig(10).

= 2.

99

www.manaraa.com

As mentioned in the previous example, the data box shows phase

and frequency information for various magnitude values. It also

shows phase and gain margin data. For a second order system, like

this one, the plot never crossed the -180 degree radial so the gain

margin is actually infinite. In this case, it is not displayed in the

data box. As a comparison, the open loop bode plot will be shown in

Fig(11).

270

180

2nd Order System

Phase Margin (deg) = 31.78

Mag Phase Freq

0.5 160.4 5.012

1.0 148.2 3.548

1.5 141.7 3.162

2.0 127.7 2.661

3.0 106.8 2.239

Fig(10) Nyquist Plot of Second Order Underdamped System.

As can be seen from the Bode plot, the system is stable with a

gain margin of about 30 degrees. To illustrate the gain margin, a

100

www.manaraa.com

pole at zero is added to the system. The transfer function is now;

10

s(s2 + 1 .5 s + 4)

The overlapped Nyquist plot is shown in Fig(12),

2nd Order System

1 10
Frequency (Rads/sec)

Fig(11) Bode Plot For Second Order System.

1000

As expected, the new type one system approaches from the -90

degree position and 'enters' the origin from the -270 degree position.

In this case, the -180 degree radial is crossed when the gain is

about 1.5. The data box shows the gain margin to be -3.39 dBs which

correlates to the observed gain. Using the method discussed earlier

in this section which determines the number of poles of the closed

101

www.manaraa.com

loop in the right hand plane, we know from the open loop transfer

function that Po = since any quadratic with all positive

coefficients will always have positive factors and the pole at zero

is not considered in the right hand plane. Folding the third order

Nyquist plot horizontally, to include the negative frequencies, we

see that the (-1,0) point is rotated twice, clockwise. Since Pc =

and Nc = 2, this means that Zc = 2, which means the closed loop

transfer function has two poles in the right hand plane.

270

180

Nyquist Plot
Dark-2nd Order System

Light- (1/s) Added

Gain Margin (dB) = -3.39

Phase Margiin (deg) = -31.51

Mag Phase Freg

0.5 231.7 3.162

1.0 211.5 2.512

1.5 188.4 2.113

2.0 170.9 1.884

3.0 116.6 1.000

Fig(12) Overlapped Second And Third Order Nyquist Plots.

This is checked by examining the System Block in factored form

using the 'Blocks' menu. First the system loop path is changed to

'Closed Loop' to add the unity feedback. The System Block data can

then be examined. The denominator data is shown in Fig(13).

102

www.manaraa.com

h,

Denominator Data

The degree is 3 ^ r- * *y Gain Constant

rf
.

OK
^)

1

Cancel
I1 1.00000 1

i

maginaryReal Imaginary Real

2.00000

-0.25000 2.22204

* 1 nput in form of (S + R+/- 1)

Fig(13) Closed Loop System Denominator In Factored Form.

As the Nyquist plot told us, the complex pair of factors have

negative real parts indicating 2 poles in the right hand plane. The

open loop Bode Plot is also overlapped in Fig(14) to compare the new

system.

As can be seen from the light open loop Bode plot, the phase

crosses below -180 degrees before the gain crosses below dB. This

is an easy check which tells us that both phase and gain margin are

negative, so the system is unstable. This again is confirmed by the

Nyquist plot which says the the gain margin is -3.39 and the phase

margin is -31.51.

103

www.manaraa.com

40

30

20

10

-10

-20

-30

-40

Open Loop Bode Plots
Dark - 2nd Order System
Light - 3rd Order System

^s
Ss . ,..,. • ,„„

,..,. ...,.

KB SI &&

**L
•••• •

,.,,. ''•-

..... ,..,.

V"
.. ..

.....

V
.....

,.,,. !#• "V-

j

.01 .1 10 100 1

90

180

270

Frequency (Rads/sec)

Fig(14) Overlapped 2nd And 3rd Order Open Loop Bode Plots.

360
1000

E PROGFIAMMER'S NOTES.

As mentioned earlier, the magnitude and phase of the transfer

function with various frequencies input, is calculated using the

same procedures as the Bode Plot tool. The overall algorithm for the

entire Nyquist plot procedure is also basically the same as described

in the Programmers' Notes covering Root Locus. A unique operation

during the calculation of the Nyquist data points is calculating the

information to be displayed in the data box. A data type called

pointdata is defined as;

pointdata = record

donedata, wasabove, isabove : boolean;

phasept, freqpt, magpt : extended;

end;

104

www.manaraa.com

There are six variables that are of this type. They are

phasemarg, gainmarg, maghalf, magthreehalf, magtwo and magthree.

Each variable corresponds to a line of information displayed in the

Nyquist data box and has a flag amount. For example, the flag amount

for magthreehalf is a magnitude value of 1.5. As each point to plot is

calculated for the Nyquist plot, the flag for each of the 6 variables

is checked. The boolean fields wasabove and isabove are set and

cleared as the flag variable (magnitude for magthreehalf) hits the

flag amount. When the flag is hit, the magnitude, frequency and

phase corresponding to the flag amount are saved in the fields

phaset, freqpt and magpt. The flag amount only triggers the loading

of the data if it is hit while decreasing. This means that if the

magnitude is increasing and passes through 1.5, it will not load the

data for magthreehalf. This is done only when the magnitude is

decreasing through 1.5. The phasemarg flag is magnitude = 1.0 and

the gainmarg flag is phase = 180. Phasemarg data is also used for

the 1.0 magnitude data line in the data box.

The Nyquist plot curve is actually made up of several straight

lines connecting points calculated from 'EvalGeq'. The function

'PointlnPlot' checks to see if both points will fall within the plot

radius. If both do not, the line is not drawn. This is to prevent the

possibility of a stray line crossing the plot. This could happen if too

few points are plotted or there are large changes in phase or

magnitude between adjacent points.

105

www.manaraa.com

As mentioned in the Root Locus section, 'Cliprect' is used to

prevent drawing lines outside of the desired plot area. With the

Nyquist plot however, this is not a rectangle so the procedure

'SetClip' is used. The 'InitPlotStuff procedure defines 'plotclipH'

which is a handle to the region defined by the outer circle of the

Nyquist plot. This was done by a procedure called 'FrameCircle' that

is in the 'NumberCrunch' module. For some reason, it is not included

in the Apple QuickDraw library. 'InitPlotStuff is called only the

first time the 'Nyquist Plot' tool is called. It also calculates the

radius of the plot circle and the coordinates of the circles center.

Although these calculations could have been replaces by constant

values, it was left this way so if in the future, the plot dimensions

or layout needed changing, it could be easily done in this one

procedure rather than having to adjust all graphic calls.

'FrameCircle* is also used to draw the concentric circles making

the radial grid of the plot. This is done in the 'DoRadialGrid'

procedure which also calls from the 'NumberCrunch' module, the

function 'FindSep' which will be further discussed in a later chapter

but in short, it returns the optimal step size for 'tics' between some

input maximum and minimum values. This is used to return integer

radial values of the concentric circles used for the Nyquist plot grid.

If a max radius of 20 was input, 'FindSep' will return a step size of

5, so there will be 4 circles, each with integer magnitude values. If

a value of 10 is input, 'FindSep' will return a step size of 2 so there

will be 5 circles.

106

www.manaraa.com

The 'DoDataBox' procedure draws the data box in the lower

corner. It determines how many lines will be needed and the size of

the box based on how many points were calculated. Before actually

drawing the box or it's data, the procedure 'EraseRect' is called

which erases any previous data boxes drawn in the case of

overlapping plots. 'WriteFreq' is a procedure that determines the

size of the frequency value to be drawn and then moves the pen

position accordingly before calling 'WriteDraw'.

Phase and magnitude data is calculated using the function,

'EvalGeq', just like for the Bode plot. The returned magnitude is

multiplied by 'multfactor' to scale it. It is then entered in the

procedure 'Pole2Rect' to determine the x and y coordinates for the

screen. A line is drawn from the new point to the last point, forming

the curve on the plot.

F. USERS' TIPS.

It must be remembered that regardless of the plot radius

parameter input, graphic calculations are being done over the entire

frequency range selected. This means that even though some data

does not appear on the screen, plot points are still being used. The

more points that are used that actually appear on the plot, the

smoother the plot will be. If the plot contains any straight lines

rather than all curves, it is a good indication that the density of

points in the plot area is not great enough. There are ways to

increase t«a density.

107

www.manaraa.com

There is a slim chance that at one end of the frequency range

selected, at either the first or last point plotted, there may be large

changes in phase or magnitude between that point and the one next

to it. If this occurs, you may see a straight line starting inside the

plot and extending to the plot edge without any curves at all. This

occurs because MacCAD will only draw a line if one of the two points

defining that line lie within the radius of the plot. This single line,

or any other perfectly straight lines appearing on the plot, could be

an indication of insufficient point density.

Even though the default frequency range will usually cover the

area of interest, it may also cover too much area that is not of

interest. By looking at the magnitudes of the numbers in the transfer

function, you can often determine if you really need to go all the way

from .01 to 1000 rads/sec. If not, decrease the max frequency or

increase the min frequency so there will be more points displayed on

the plot.

An option that may also improve the plot is selecting 'Linear' or

'Logarithmic' intervals. The methods of calculating the interval is

discussed in the Root Locus chapter but as a rule of thumb, if the

ratio of the maximum frequency to the minimum frequency is

greater than about 100, the Logarithmic option may be better. This

is why it is the default setting. If you are more interested in the

upper frequency area, such as a resonant peak, the Linear option

would be better and likewise, if the low end of the frequency range

is most important, the Logarithmic interval would be best.

108

www.manaraa.com

The default is set for 200 points to plot. This will give good

results in most cases and will only take about 30 seconds to plot. If

adjusting the frequency range or the plot interval still does not give

a smooth looking plot, try increasing the number of points plotted.

Realize that doubling the number of points also doubles the time

required to draw the plot.

If the trace rotation is counter clockwise, it is a good

indication that the system might be a non-minimum phase system.

This should be double checked using the methods discussed earlier

on determining the direction of rotation along with examining the

open loop transfer function.

When selecting to draw a new or overlapped Nyquist plot, it will

be drawn using the Main System and it's loop path 1
. If you have

just checked the closed loop Bode plot or time response, be sure to

change the loop path back to Geq before calculating the Nyquist plot.

Otherwise the plot will be confusing or meaningless. This applies to

the use of all plots. You should always know what kind of loop path

you have entered for your system before making a new plot.

As with any other plot in MacCAD, when using label boxes, if you

think you may want to overlap plots and may want to change the

label, make your first label with short lines of text and only 1 or 2

lines long. This way, after overlapping the plots, you can easily draw

a new label over the old one by using more lines with longer text. It

1 The type of feedback, Geq, Forward Path, Open Loop or Closed

Loop. See chapter on Block manipulation for clarification.

109

www.manaraa.com

may be difficult to draw a new label over an old one if they contain

the same number of lines.

When analyzing higher ordered systems, the Nyquist plot may

cross the -180 degree radial or the .5, 1, 1.5, 2 and 3 magnitude

circles more than once. The data box may display surprising

information. Remember how the data for each point is calculated. If

you are not sure, reread the Programmers' Notes section in this

chapter. MacCAD only reports the first time the requirements are

met to calculate the data for each line entry in the data box. For

example, some plots may cross the -180 degree radial more than

once. If this is the case, the data shown in the box will be for the

first time the plot crossed the radial in a clockwise direction. If it

only crosses once in a counter clockwise direction, such as in the

non minimum phase system used in the first example, the gain

margin will not be displayed at all.

110

www.manaraa.com

VII. ROOT FINDER

A. BASIC DESCRIPTION.

There are three cases where the roots of a large order

polynomial, in coefficient form, must be determined. The first is

when transforming a polynomial in the 'polycoef variable type to the

'polyfact' type. This is because MacCAD saves all polynomial in the

coefficient form but allows the user to enter or view them in either

form. The second case is when calculating data points for the Root

Locus plot. The characteristic polynomial, which is still in

coefficient form, is solved using various system gain values. The

third case is in the form of a tool available to the user at any time

through the pull down menu item 'Root Finder' under the 'Tools' menu.

B. A SIMPLE EXAMPLE.

Consider having the task of finding the roots of the equation;

(s
4 + 2s3 + 3s2 + 4s+5).

This will be done by using the 'Root Finder' function under the

Tools' menu. The function is selected by either hitting the command

key and the letter "P simultaneously or by selecting 'Root Finder'

under the 'Tools' pull down menu. When this is done, you will see a

dialog box like Fig(1), asking for the order of the polynomial that you

would like to solve the roots for.

111

www.manaraa.com

ROOT FINDER

What is the order of

the polynomial to be
factored?

r -?

OK
> -i

Cancel

ran

Fig(1) Root Finder Dialog Box.

Root Finder will presently calculate the roots for polynomials

of degrees between 1 and 10. Entering any integer between 1 and 10

will start the 'RootFinder' 1 subroutine which will be described

later. Any other characters will be considered an error. The data box

will be outlined, the erroneous input highlighted and and the dialog

box will wait for another input. In this case the integer '4' is

entered, since the denominator is 4th order, and 'OK* is selected. A

dialog box then appears asking for the coefficients of the

polynomial. The coefficients of the polynomial are entered the same

way as entering or editing block numerators or denominators,

described in an earlier chapter. Fig(2) shows the dialog box after the

data has been entered.

1 The subroutine procedure is called "RootFinder" where as the

tool available to the user is called "Root Finder". Note the use of

spaces in differentiating the two names.

112

www.manaraa.com

RootFinder GO Cancel

Gain Constant

1

s**3

2

S**2 s**i

5*#^i

s**Q

=1

Fig(2) Third Order Equation Entered In Root Finder.

Although a gain constant will not affect the roots of the

polynomial, it is still included in the dialog box in order to keep the

format of entering polynomials constant throughout MacCAD. Any

number can be entered in this case so the number 1 is used. The

polynomial coefficients are entered in descending order and 'OK' is

selected. The roots are then displayed in the same format as block

data. Fig(3) shows the roots of the denominator.

The factors of the polynomial are shown to be two complex

pairs. Remember that the roots of the equation will have the oposite

sign of the factors displayed in the dialog box. If the third order

equation was the denominator of an open loop transfer function, the

fact that the real part of the second complex pair is negative

indicates a pair of roots in the right hand 's' plane so the system

would be unstable.

113

www.manaraa.com

MAftMMAMMMM*

RootFinder

The degree is 4 i
OK

Gain Constant

Real Imaginary

1.28781

-0.28781

0.85789

1.41609

1.00000

Re;al

Cancel

Imaginary

Fig(3) Roots Of G(s) Denominator.

C. PROGRAMMERS NOTES: ROOTFINDER PROCEDURE.

The procedure which solves for the roots of a polynomial is

called 'RootFinder'. It is is defined as;

RootFinder (polycin : polycoef;

var polyfout : polyfact

accurate : boolean);

where 'polycin' is the polynomial in the coefficient form that is to

be factored, 'polyfout' is the output polynomial in factored form,

'accurate' is a boolean input which when true, increases the accuracy

requirements of 'RootFinder'.

114

www.manaraa.com

•RootFinder' uses Bairstow's Algorithm which takes a high order

coefficient polynomial and iteratively searches for a quadratic that

can be divided into it. The quadratic that is searched for is in the

form;

s2 + Ps + Q

The values 'P' and 'Q' are set at an initial value, in this case

zero, and the quadratic is compared to the original equation.

Correction factors, delP and delQ, are calculated and added to the old

values of 'P' and 'Q'. The quadratic is again compared to the original

polynomial and corrections calculated and added. This process is

repeated until the magnitude of the ratio of delP/P + delQ/Q is less

that an acceptable error value, epsilon. When the accuracy

requirements are met, the 'inlimits' boolean flag is set and the

quadratic is solved with the quadratic equation through the

procedure 'DoQuad' and the original coefficient polynomial which is

recalculated has it's order decreased by 2. This entire process is

repeated until the recalculated coefficient polynomial is of order 2

or less where the remaining roots are determined by 'DoQuad' if the

order is 2, or by the remaining coefficient if the order is 1.

The value for epsilon is set at one of two values depending upon

the accuracy desired. Higher accuracy requires more iterations

which require more time. Calculating the roots for the Root Finder

tool and changing a polynomial from 'polycoef to 'polyfact' uses the

higher accuracy epsilon, 10~7 which usually gives at least 5 digits

of accuracy. The Root Locus plot calculations use the lower accuracy

115

www.manaraa.com

epsilon, 10"^, which gives about 2 digits accuracy. For plotting

purposes, additional accuracy is not necessary since the difference

could not be seen. Since fewer iterations are necessary for the

lower accuracy, the plotting speed is greatly increased.

MacCAD's 'RootFinder' procedure was written starting with a

previous PASCAL version of Bairstow's Algorithm written for the

IBM personal computer by Wood. [Ref.2] Several changes were made

to adapt to the Macintosh system and to use the data structures of

MacCAD. In addition, three errors in the original code were also

corrected.

The first was in the case of repeated roots. If there were more

than two real roots at the same location, the 'P' and 'Q' values would

not converge. They would oscillate around the values they should

have converged to. The accuracy criteria is never met so the program

is effectively in an infinite loop and only stops when the number of

iterations reach a predefined maximum value. At this point the

procedure would stop without updating 'polyfout'. The factor values

contained in 'polyfout' would then be what ever number might have

been residing in that memory location. Usually zero would be output

or a floating point error would occur.

This error was corrected by decreasing 'delP' and 'delQ' by a

factor of .5 any time both changed in sign from the previous

correction. By decreasing the size of the corrections, 'P' and 'Q' were

able to converge to the correct value. This was checked by inputting

3rd to 9th order coefficient polynomials with a variety of repeated

116

www.manaraa.com

roots. Even with the highest accuracy setting, every polynomial was

solved.

The second error occurred with roots at zero. It would appear at

first that there would be little reason to want to solve a polynomial

with roots at zero since they would be very obvious from the zero

valued lowest coefficients. In the case of calculating data points for

the Root Locus plot however, it is possible that for some value of

gain, the characteristic equation could have roots at zero. In

addition to this possibility, it was desired to make the procedure

fool proof so the user could enter any polynomial, even one with

obvious solutions, and the proper roots would still be found.

The error was easily corrected by checking the original

coefficient polynomial to see if the lowest coefficient was equal to

zero. If it was, the first factor value of 'polyfout' was set to zero

and the original polynomial was 'shifted to the right' which

eliminated the root at zero and decreased the order by one. This was

repeated until the lowest coefficient was not zero.

The third error would not cause catastrophic results as would

the first two but would give inconsistent accuracy. The original

routine checked for accuracy by summing the magnitudes of 'delP'

and 'delQ' and comparing that value to epsilon. If the actual values

of 'P' and 'Q' were fairly small, the error criterion would be met

with fewer iterations than if 'P' and 'Q' were much larger. In short,

the error criteria was determined from the magnitude of the

correction factors, 'delP' and 'delQ', regardless of the values of 'P'

and 'Q'.

117

www.manaraa.com

This was corrected by changing the 'inlimits' flag to be set when

the relative changes of 'P' and 'Q' are less than epsilon. This was

done by comparing the magnitudes of (delP/P) and (delQ/Q) to

epsilon. In this way, the relative accuracies of 'P' and 'Q' are

consistent before calling 'DoQuad'.

In summary, the 'RootFinder' routine solves the roots of any

coefficient polynomial of order between 1 and 10. It is used by the

MacCAD for converting polynomial types and when calculating Root

Locus points. It is also available to the user in the tool 'Root Finder'.

This allows the MacCAD user to pre-analyze data by being able to

factor a polynomial of his choice before entering it as a block in the

system.

118

www.manaraa.com

VIII. ROOT LOCUS

A. BASIC DESCRIPTION.

The Root Locus is a widely used tool for determining the

stability and response characteristics of a closed loop transfer

function based on varying the gain of the forward path. The zeros of

the transfer function are the roots of the characteristic equation.

These roots are plotted with real component as the abscissa and

imaginary component as the ordinate. The roots are plotted for each

interval value of the gain from some determined minimum to a

maximum gain value. The points form a locus and indicate how the

roots move as the gain is increased. A variety of information is

obtained from the plot. At any particular gain value, if any points are

plotted in the right hand plane, the system would be unstable if that

gain value were used. If all the roots lie on the real axis, then the

system would not be expected to have any oscillations. If the locus

of points is close to the imaginary axis, it indicates that the system

is close to instability and a small change in any of the elements that

make up the transfer function could lead to instability.

B. USER OPTIONS.

After a system transfer function has been entered, selecting

Root Locus from the Tools' menu gives you the option of redrawing

the last Root Locus or overlapping it with a new plot, if a plot has

119

www.manaraa.com

already been drawn. If not, 'Draw New Plot' can be selected to draw

the first plot. If a new plot is to be drawn, you will be asked for

various plot values and option selections. The minimum and

maximum gain values are input as well as the number of points to

plot. The display dimensions are also input at this time. By selecting

the max and min values for 'X' and *Y\ any rectangle on the 's' plane

can be seen. There is an option for either Linear or Logarithmic point

intervals. This determines how the incremental gain values between

the max and min will be determined. An example of this is included

later in the chapter. The loop path is also an option. This does not

change the loop path of the original transfer function. It is only used

for plotting the Root Locus. If the transfer function has a nonzero

feedback path, then you can select either 'Geq' or 'Closed Loop Path'.

These have the same definitions as described in the block

manipulator section. Selecting 'Geq' means the gain of the forward

path will be adjusted during the plot point calculations. 'Geq' is

defined as;

Geq = G/(1 + G*H)

Where G is the product of the forward path blocks and H is the

product of the feedback path blocks. If K is the gain, then the

characteristic equation is;

1 + K*G*H

or

Gden*Hden + K*Gnum*Hnum

120

www.manaraa.com

Where 'num' and 'den' denote numerator and denominator

polynomials respectively. If 'Closed Loop' is selected, then unity

feedback is added to the system transfer function. 'Closed Loop' is

defined as;

Closed Loop = Geq/(1 + Geq)

The characteristic equation is then;

1 + k Geq

or

Gden*Hden + Gnum*Hnum + K*Gnum*Hden

This option allows you to select where to put the gain 'K*. If your

system does not have any blocks in the feedback path, you will be

notified by an alert box that states the default has been changed from

'Geq' to 'Closed Loop' since selecting 'Geq' without any feedback blocks

would not allow the characteristic equation to change as 'K' is changed.

C. FOURTH ORDER CHARACTERISTIC EQUATION EXAMPLE.

As an example of the Root Locus plot and it's options, a one block

transfer function has been entered. The numerator is 1 and the

denominator was entered in factored form with zeros at -1, -3, -5, and

-7. This was selected because it will show how real roots move

towards each other in pairs and when they meet, they split and move in

opposite directions as complex conjugate pairs. Fig(1) shows the dialog

box that is shown after selecting 'Root Locus' from the 'Tools' menu.

In this case, you select 'Draw New Plot' since this is the first

plot. You will then see the dialog box as in Fig(2).

121

www.manaraa.com

ROOT LOCUS PLOT SELECTIONS

Redraw Plot

Draw New Plot

Ouerlap Plots

Cancel

Fig(1) Selecting 'Root Locus' from 'Tools' menu.

InDUt Root Locus Plot Data OK

r-^^™
Dm ? S

1

OK
i- 1

There are no feedback blocks

in the system so the default

loop path has been changed
to "Closed Loop" for this plot

V Min -10.000 Y Ma« 10.0000

o Geq Loopi Path

® Closed Loop Path

Fig(2) Dialog Box After Selecting 'Draw New Plot'.

122

www.manaraa.com

Fig(2) also shows the alert box that is displayed since you have

not entered any blocks in the feed back path. The alert box must be

responded to first so the 'OK' box is selected. The dialog box is then

shown in Fig(3).

Input Root Locus Plot Data
t \

OK
J- -i

!

r "V

Cancel
L J

Minimum Gain 0.100004

Maximum Gain

Points To Plot

10.0000

25

O Logarithmic P

<•) Linear Point li

oint Int

iteruah

erual

5

H Min -10.000 H Man 2.00000

V Min -10.000 V Ma« 10.0000

®
Geq Loop

Closed Li

i Pe

sop

ith

i Path

Fig(3) Root Locus Dialog Box.

The plot default values are shown in Fig(3). They can be changed

as desired and the next time the dialog box is displayed, your last

selected values will be shown. For illustrative purposes we will

select the values shown in Fig(4).

123

www.manaraa.com

Input Root Locus Plot Data
i-

—

0K
|

Cancel

Minimum Gain

Maximum Gain

Points To Plot

0.100001

10000

50

O Logarithmic Point Interual

® Linear Point Interuals

K Min -15 H Ma» 10

V Min -10.000 V Ma» 10.0000

O Geq Loop

® Closed Li

i Path

sop Path

Fig(4) Plot Settings For Example.

The plot will be done twice in order to show the effect of the

linear and logarithmic intervals. In the case of Fig(4), we select OK

after entering the desired values. An alert box shows the points

being calculated and counted down. The plot is then displayed. When

enlarged to cover the whole screen, it looks like Fig(5).

For a quick comparison, the plot will be drawn again by

selecting 'Draw New Plot' using the same values but selecting

Logarithmic Interval. The plot now looks like Fig(6).

124

www.manaraa.com

s ^-
t

*

v
-15.0 -10.0 -5.0 0.0 5.0

Fig(5) Root Locus With Linear Intervals.

10.0

8.0

6.0

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

-10.0

10.0

*
*

*
*

* *

X ..••

*

\ /
y v

..'**••
•••..

*
+

*

*
*

*

-15.0 10.0 -5.0 0.0 5.0

Fig(6) Root Locus With Logarithmic Intervals.

10.0

8.0

6.0

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

-10.0

10.0

The difference in the plots is clear. For 'Linear' interval, the

gain step size is calculated by subtracting the min gain from the

125

www.manaraa.com

max gain, entered in the dialog box, and then dividing by the number

of points to plot. In the first plot, Fig(5) the gain step size is;

(1 0000 -.1)/ 50 -199.9

The plot in Fig(6) was calculated using 'Logarithmic' intervals.

This can be best described by marking the minimum and maximum

gain values on a sheet of log paper. Measure the distance between

these two points on the log paper using a ruler. For an example, say

this distance was 6". Now divide 6" by the number of points to plot.

This would be 6/50 = .12" Now with the ruler mark 50 'tics' on the

log paper at .12" intervals. Reading the corresponding log chart value

at each 'tic' will give the gain values to use for 'Logarithmic'

interval calculations.

Most CAD programs calculate the gain intervals using the

'Linear' method. This emphasizes gain values that are closer to the

max gain. This becomes more evident as the max gain to min gain

ratio increases. Using the 'Logarithmic' interval, gives more

emphasis to the lower gains so a more continuous locus can be

drawn. As a basic rule of thumb, if the max to min gain ratio is

greater than 100, selecting 'Logarithmic' interval will give a more

continuous plot. Or, for example, if you are more interested in where

the real roots meet and split into conjugate pairs, rather than their

exact locations well after they have split, then 'Logarithmic'

interval would be best. If you know the roots will split but are more

interested in where they are going after they split, than the 'Linear'

interval may be better.

126

www.manaraa.com

As with all the other plots in MacCAD, you can chose to plot a

root locus, change a block in the system and then overlap the new

plot on the old one. You can overlap as many plots as desired and

each new plot 1 will be drawn using a lighter pattern so they can

be distinguished. Label boxes can also be added.

D. PROGRAMMER'S NOTES.

The basic algorithm of the subroutine calls for the Root Locus is

very similar to that used for the other plots available in MacCAD.

Roughly, the user selects Root Locus from the pull down menu or

from the keyboard shortcut. He then inputs his desire to redraw an

old plot, draw a new plot, overlap plots or cancel the operation. If

drawing a new plot, a dialog box is presented where he inputs the

plot parameters. The default parameters are either those set during

the subroutine 'Setup' called in the beginning of 'Main' when

initializing all variables, or the last values input by the user.

'GetRLocusData' displays the dialog box where the parameters are

displayed and entered by the user. The default values are displayed

in the dialog box by the procedure 'InitRLocus'. ' GetRLocusData'

handles events occurring in the dialog box, such as selecting OK,

Cancel or the radio buttons. If OK is selected, then the present

parameters are all checked to be the proper type of number. For

example, the number of points to plot must be a positive integer and

the gains must be positive real numbers with the max gain larger

than the min gain.

Up to the fourth plot.

127

www.manaraa.com

Each parameter entered is checked by the function called

'GoodRLocusDataEntered' which returns a boolean 'true' if the

parameters are correct and 'false' if not. If a parameter is incorrect,

the procedure 'FrameDataError' is called which frames the data box

containing the incorrect parameter. If this is the first error

detected, then that data box is selected as if double clicked by the

cursor. If it is not the first error, the box is just framed. If all data

is correct, the procedure 'DrawBasicPlot' is called which draws the

plot grid. It calculates the labels and their intervals and also draws

them.

The 'DataToGraph' procedure then determines the gain value from

the function 'NextGain' and calculates the characteristic polynomial

from function 'GetGeq'. This coefficient polynomial is then factored

using 'RootFinder'. The factors are then plotted as small crosses

through the functions 'PlotPoints' and 'CrossPoint'. A new Geq is

calculated for each gain value and the process is repeated until the

desired number of points have been calculated and plotted. It should

be noted that although selecting a large number of points to plot

will give a more continuous locus, the time required to complete the

plot would be considerable. 'RootFinder' must be called for each gain

value and since it is an iterative procedure with up to 1000

iterations for each complex conjugate pair in the polynomial, it

could be very time consuming. This is the reason 'RootFinder' has an

option for a lower accuracy, which then requires fewer iterations,

and is the only time the lower accuracy option is used in MacCAD.

128

www.manaraa.com

Accuracy to 3 decimal places would not be noticeable from points

plot on a graph.

As with the other plotting routines, the clipping rectangle of the

Root Locus window is changed to the rectangle which defines the plot

dimensions called 'plotrecf. In this way, if a point is to be drawn

which would fall outside of the plot, the clipping region prevents it

from actually being drawn.

Overlapping plots is also done similarly to the other plots. The

last plot is saved as a picture. 'GetRLocusData' is skipped so the

parameters cannot be changed before the next plot. 'DrawBasicPlot'

is also skipped since the plot grid and labels have already been

drawn by the first plot. Depending on the number of layers drawn,

the pen pattern is changed to a lighter shade. 'DataToGraph' is then

called which draws only the new points. These are drawn on top of

the picture saved of the last plot. The resulting combination picture

is then associated back to the Root Locus window.

129

www.manaraa.com

IX. TIME RESPONSE

A. BASIC DESCRIPTION.

The Time Response' item under the Tools' menu allows the user

to view the output of the system in the time domain using one of a

variety of standard inputs. These inputs include the step function,

ramp, impulse and sine wave. As with the other plots available in

MacCAD, there is always the option of overlapping plots or adding

labels.

The Bode, Nyquist and Root Locus plots can all be used to

determine the systems stability in addition to a great deal of other

information. The stability of the system may be easier to visualize

with the time response plots. The standard time domain input used

for determining stability is the unit step function. From the plot of

the unit step time response you can measure several characteristics

of the systems transient response such as the rise time, delay time,

maximum overshoot, settling time and the steady state error. Rise

time is the time it takes the output to increase from 10% to 90% of

it's final value. Delay time is the time required for the output to

reach 50% of it's final value. The maximum overshoot, usually

expressed as a percentage of the input value, is the difference

between the largest value the output reaches and the input value.

This only applies if the outputs largest value is greater than the

input value. Settling time is the time it takes for the output to reach

130

www.manaraa.com

and stay within 2% of its steady state value. The steady state error

is the difference between the input value and the output value as

time approaches infinite. Fig(1) shows some of these quantities.

1.500

1.250

Rise Time

Fig(1) Transient Response Characteristics.

B. USER OPTIONS.

When Time Response' is selected from the Tools' menu, the user

has the option to redraw the last Time Response plot, draw a new

plot or overlap a new plot on the last one. Drawing a new plot is done

by selecting the type of input function. If the Step function is

selected, the default step amplitude is 1.0 but it can be changed to

any real number. The Ramp function has a user adjustable slope and

an optional D.C. offset. The Sinewave function has an adjustable

frequency as well as amplitude. The Impulse has an adjustable

131

www.manaraa.com

amplitude but also has the option of automatically setting the

amplitude so the input will be a unit impulse.

The plot dimensions are input as a maximum plot value and the

maximum time to plot. There is also the option to place the zero

value of the ordinate at the plot's center or at the bottom of the

plot. This option is not available for the sine wave input which

always places it at the center.

As with other MacCAD plots, the overlap option draws a new

plot on top of the last one, using the same plot parameters as the

previous plot. The same input function will also be used for the new

plot.

C. TIME RESPONSE CALCULATIONS.

The time response is calculated by changing the continuous

linear system transfer function into discrete state-space matrices.

This is done by first describing the system states with the familiar

matrices;

x'(t) = A x(t) + B u(t)

y.(t) = C x(t)

The A, B and C matrices can be determined from the original

transfer function.

2 .

as + b s + c

3 H 2
s +ds +es+f

132

www.manaraa.com

A =

1

1

-f -e -d

B
1

= _c b a"

These continuous matrices are then transformed into the

discrete time matrices;

x(k+l) = 4> x(k) + r u(k)

y(k) = C x(k)

using the definitions;

<D = I + A u(T)

r = u(T) B

with T equal to the sampling period and u. defined as;

^T) -J*«
A° da-Tl(Ak

T
k
)/(k+D'

k=0

The actual value of T is determined by the max time parameter

input by the user. The max time value is divided by 1000 to get the

sample interval T. The calculation of these matrices will be

discussed further in the Programmer's Notes section.

133

www.manaraa.com

D. ILLUSTRATIVE EXAMPLE 1 . THE UNIT STEP INPUT.

A lightly damped second order system will be used to illustrate

the Time Response, starting with the unit step. The transfer

function is given as;

2

oon

o 2
s z + 2£con +con

where con = 2 and £ will be varied from .25 to 1.0 in order to

show it's effects. Starting with the smallest value for £ the

following transfer function is input as block #1.

4.0

s^ + 1.0 s + 4.0

The 'Time Response' item from the 'Tools' menu is selected and

the dialog box displayed is shown in Fig(2). This gives the redraw

and overlap options along with the various input functions for a new

plot. The Step Input will be selected at this time. The Step Input

dialog box is shown in Fig(3).

134

www.manaraa.com

TIME RESPONSE SELECTIONS

Redraw Plot

Overlap Plots

Step Input

Ramp Input

Impulse Input

Sineivaue Input

Cancel

ifnmmmm

Fig(2) Time Response Dialog Box.

Step Response Data

Step Rmplitude

Plot Rmplitude

Ma« Time (sees)

OK
l> -i

r
/~~ 1

Cancel
1- -1

1.00000

14

10.0000

® Zero Is Plot Bottom

O Zero Is Plot Center

Fig(3) Step Input Dialog Box.

135

www.manaraa.com

The only parameter changed was the Plot Amplitude. It was

increased from the default value of 1.25 to 1.5 because the system

is lightly damped and we know there will be overshoot. The Step

Amplitude is left at 1.0, making this the unit step response. The

radio button by 'Zero Is Plot Bottom' is left at the default value

because the system should not have such large oscillations that they

would go below zero. For very lightly damped or marginally stable

systems, this option might be selected.

After 'OK' is selected, an alert box counts down from 1000 to

as each time sample is calculated. The plot that shows the unit step

response is shown in Fig(4).

1.500

1.250

1.000

0.750

0.500

0.250

0.000
0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time (sees)

7.0 8.0 9.0 10.0

Fig(4) Unit Step Response £ = .25

From Fig (4) the max overshoot is approximately 40%, the delay

time about 1/2 seconds as is the rise time. The settling time is

136

www.manaraa.com

about 7.0 seconds if you consider the 4th oscillation being within 5%

of the final value.

To show how £ affects the response, it will be changed to .5, .75

and 1.0 The plots will be overlapped. The final step response is

shown in Fig(5).

1.500

Unit Step Response
Dark to Light

Zeta = .25 .5 .75 1.0

1.250

1.000

0.750

0.500

0.250

0.000
0. 1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0 8.0 9.0 10

Time (sees)

Fig(5) Final Overlapped Plot Showing Various Values For £

E. ILLUSTRATIVE EXAMPLE 2. THE RAMP INPUT.

MacCAD also has the capability to examine the transient

response to a ramp input with an optional O.C. offset, or a sine wave.

Unlike for the unit step input, the sine or ramp responses can be

difficult to analyze without the input also being plotted on the same

graph. The Overlap option is ideal for this situation. For this

137

www.manaraa.com

example, the second order system of the previous example will be

used. I will be set to .25 so the system will be lightly damped. Once

the system transfer function has been set as desired, the block data

is saved to a file.
1 After this is done, a new transfer function is

loaded. It is a simple function but it may be desirable to also save it

to a file called 'Unity Function' perhaps because it may be used often.

The Unity Function has a transfer function which equals a constant.

It is entered using the 'Blocks' menu items as any other transfer

function. Enter zero for both the numerator and denominator order.

Enter 'ones' for the gain constants and the s^ terms for both

numerator and denominator. This makes the transfer function = 1/1.

The Bode plot of this transfer function would give a straight line

along the dB line and phase over the entire frequency range.

Selecting 'Time Response' for this function will obviously

display the input on the plot since when the transfer function equals

one, the output equals the input. Using the Unity Function, the ramp

response will be plotted. For this example, a slope of 1.0 and a D.C.

offset of 2.0 will be used. After selecting 'Time Response' from the

'Tools' menu and 'Ramp Input' from the dialog box shown in Fig(2),

the dialog box shown in Fig(6) is displayed.

The offset and slope values are set as described earlier. We want

to see the first 5 seconds of the output so the Plot Amplitude is set

to 7.0 in order to show the output, or the input in this case, over the

entire time period selected. After clicking 'OK' the plot is shown in

Fig(7).

See section covering Standard Macintosh Menus.

138

www.manaraa.com

Ramp Response Data

Slope

D.C. Offset

Plot Amplitude

Max Time (sees)

OK
k -J

Cancel
L J

1.00000

2.00000

7

=1

® Zero Is Plot Bottom

OZero Is Plot Center

Fig(6) Ramp Input Dialog Box.

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0
0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000

Time (sees)

Fig(7) Unit Ramp Input With D.C. Offset of 2.0

139

www.manaraa.com

The plot now shows the input signal. The second order system is

now loaded back into the system block and 'Overlap Plots' is selected

from the 'Time Response' dialog box. The resulting overlapped plot is

shown in Fig(8). It can be seen from this plot that the output

overshoots the input at time = 2 seconds and then stabilizes at 5

seconds.

F. ILLUSTRATIVE EXAMPLE 3. THE SINE WAVE INPUT.

This example will show the use of the sine wave input as well

as another use of the overlap option and the Unit Function. A servo

which is described by the second order transfer function used in the

previous examples will be used here. The input to the system will be

a reference signal in the form of the first quarter of a period of a

sine wave with a radial frequency of 1.0. It will be directing the

servo to move from it's present position, the origin, to the desired

position, 1 unit away. It is desired to determine when the output

position has less than a 20% position error relative to the input

reference signal while en route to the final desired position located

1 unit away. This will be done using a variation of the Unit Function

and the 'Sine wave Input' from the 'Time Response' tool.

The Unit Function and overlap option will be used to draw an

'envelope' with less than a 20% error. After loading the Unit Function

into the System block, the numerator gain constant is changed from

1.0 to 1.2. Now select 'Sine wave Input' from the dialog box shown in

Fig(2). The next dialog box is shown in Fig(9).

140

www.manaraa.com

Ramp Response
2nd Order, Zeta = .25

Dark-input Light-output
7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0
0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500

Time (sees)

Fig(8) Ramp Input And Output With £ = .25

Sineujaue Response Data
OK

Cancel

Peak To Peak Amplitude

Sin Freq (Rads/sec)

Plot Amplitude (+/-)

Ma« Time (sees)

1.00000

1.00000

1.25000

1.75)

Fig(9) Sine Wave Input Dialog Box.

141

www.manaraa.com

The frequency has been set to 1 .0 and the Max Time has been set

to 1.75 because this will show the first quarter period which is all

we are interested in. After clicking on 'OK' the plot is shown in

Fig(10).

1.250

0.750

0.250

-0.250

-0.750

-1 .250
0.000 0.250 0.500 0.750 1.000

Time (sees)

1.250 1.500 1.750

Fig (10) Upper Limit Of 20% Output Error Plot.

Since the numerator gain constant of the Unity Function was

changed to 1.2, the resulting plot is 1.2 times a sine wave of

amplitude 1. This forms the upper limit of the 20% output error. The

numerator gain constant is now changed from 1.2 to 0.8 and

overlapping a new plot will now draw the lower limit of the output

error. Fig(11) shows the completed plot of the 20% error envelope.

The second order system can now be loaded and the Time Response'

overlap option again selected. The final plot is shown in Fig(12).

142

www.manaraa.com

1.250

0.750

0.250

-0.250

-0.750

-1.250
0.000

1n_rutAiMl'WWWVW<

) 0.25C> 0.50C> 0.750 1 .000 1 .250 1 .500 1 .750

1.250

0.750

0.250

-0.250

-0.750

-1.250

Time (sees)

Fig(11) Plot Of 20% Output Error Envelope.

Output and 20£ Error Envelope
Lightest - output
Darker - envelope

Fig(12) Final Plot Of Output And Error Envelope.

143

www.manaraa.com

The plot clearly shows that even though the output is nearly 1.0

after the quarter period, 1.57 seconds, it does not decrease the

position error below 20% until time 1.35 seconds.

G ILLUSTRATIVE EXAMPLE 4. THE IMPULSE INPUT.

This example will use some simple Laplace transforms and

Laplace definitions to illustrate the Impulse Input option. We will

describe the system transfer function as G(s). If we excite this

system with an input, X(s) then we can describe the output, Y(s) =

X(s) G(s). If X(s) is the Laplace of the input signal in the time domain,

then the output signal in the time domain is the inverse Laplace of

Y(s). This procedure is simplified if the input is a unit impulse in the

time domain which has a Laplace transform of 1. This makes X(s) =

1.0 which implies that Y(s) = G(s). This means that the output in the

time domain, is the inverse Laplace of the system transfer function

G(s).

To illustrate this using MacCAD, we will obtain the time

response using a unit impulse input for a few transfer functions,

G(s). The first transfer function will be in the form of;

1

(s-a)

which is recognized as the Laplace transform of ea *. We will select

'a' to be -0.25 so the exponential will decay and the time constant

will be 4. The settling time should be about 3*4 = 12 seconds. This

makes the transfer function;

1

(s +.25)

144

www.manaraa.com

This transfer function is entered into the System block. 'Impulse

Input' is then selected from the Time Response' dialog box of Fig(2).

The following dialog box is shown in Fig(13).

A new option appears on this dialog box. It is the 'Set Auto Unit

Impulse Amplitude' check box. This obviously applies only to the

impulse input. Since the time response is calculated discretely, and

the impulse is approximated as a square pulse with a width equal to

the sampling interval T described earlier, the amplitude must be

adjusted to be 1/T in order to make the area under the 'impulse'

curve equal to 1.0 for a unit impulse.

Impulse Response Data

Impulse Rmplitude

Plot Rmplitude

Ma« Time (sees)

OK

Cancel

100.000

1.50000

10.0000

Set Ruto Unit Impulse Rmplitude

O Zero Is Plot Bottom

® Zero Is Plot Center

Fig(13) Impulse Input Dialog Box.

As 'Max Time' is changed, the value of T will change, thus

requiring the impulse amplitude to also change in order to maintain

145

www.manaraa.com

it's unity value. Checking the check box lets MacCAD do this

calculation automatically each time the Max Time is changed. This

can be seen by entering a new number in Max Time and seeing the

'Impulse Amplitude' change. As each digit is added or changed to Max

Time, the Impulse Amplitude changes. Clicking the mouse in the

check box will remove the 'x' signifying that the option is

deselected. This allows the user to enter any amplitude desired and

it will not be changed if the Max Time is changed. In our example, the

'unity' area is desired so the check box is left at the default setting

indicating the option is activated. We will also click the radio

button changing zero to the plot center. The need for this will be

evident later in the example. After selecting 'OK', the time response

is displayed as in Fig(14).

1.500

1.000

0.500

0.000

-0.500

-1.000

-1.500

—

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sees)

Fig(14) Unit Impulse Response Of 1/(s+.25)

146

www.manaraa.com

The time response correctly displays the exponential decay

which is the inverse Laplace transform of the transfer function G(s)

= 1/(s + .25) We will change the numerator gain constant from 1.0 to

-1.0 and overlap the new plot. This will make a mirror image of the

first plot forming the exponential envelope as in Fig(15).

As a final illustration, an new transfer function will be entered.

This will be in the form of;

s-a

1.500

1.000

0.500

0.000

0.500

-1.000

-1.500

(s - a)
2 + b2

Exponential
Envelope

^i

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sees)

Fig(15) Overlapped Plot Forming Exponential Envelope.

147

www.manaraa.com

which is the Laplace transform of eat cos bt. Setting 'a' = -.25 and

'b' = 2.0 makes G(s) equal;

S+.25

(s
2 + .5s + 4.25)

The new G(s) is entered as the System block and overlap plots is

once again selected from the Time Response' dialog box. The

resulting plot is shown in Fig(16).

1.250

0.750

0.250

-0.250

-0.750

Exponentially Decaying Cosine
Time Constant = 4.0

Frequency = 2.0 Rads/sec

-1.250

\ *""m ll'VJ

\

^rf>^

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sees)

Fig(16) Final Overlapped Plot Showing Exponential Decaying Cosine.

K PROGRAMMER'S NOTES.

A variable called 'timedata' is used to store the information

about the plots for the various types of inputs. All the parameters

148

www.manaraa.com

for this and all other plots are initialized when MacCAD is first

started in the module CAD SetUp. The 'timedata* variable is defined

as;

timedata : RECORD
inputtype : integer;

maxtime : extended;

amp : extended;

impamp : extended;

autoimpamp : boolean;

zerobottom : boolean;

freq : extended;

slope : extended;

dcoff : extended;

maxy : extended;

layer : integer;

doit : boolean;

'inputtype' is an integer identifying the type of input used. 1 is

for step, 2 for ramp, 3 for impulse and 4 for sine wave, 'maxtime'

corresponds to the plot parameter 'Max Time' input in the dialog

boxes prior to plotting, 'amp' is the amplitude of the inputs, 'impamp'

is the input amplitude for the impulse input. The boolean

'autoimpamp' is true when the impulse amplitude is automatically

set based on the 'Max Time' input by the user. Boolean 'zerobottom' is

true if the plot zero is to appear at the plot bottom and false if it is

to appear at the center, 'freq' is used only for the sine input, as the

radial frequency of the sine wave, 'slope' and 'dcoff are used for the

ramp input and is the slope and D.C. offset, 'maxy' is the max plot

amplitude, 'layer' is used to identify how many plots have been

overlapped. This is used to determine the pen pattern of the next

plot. The boolean 'doit' is used during the input dialog boxes. It is

149

www.manaraa.com

used both as a flag indicating the user does want the new plot drawn

and for saving the input parameters as the new timedata.

Some simple procedures and functions within the CAD Time

Menu module include 'Mag2Ht' which returns the vertical pixel

position corresponding to the height value input relative to

timedata. maxy. Time2Wd' converts a value of time input to a

horizontal pixel position based on timedata. maxtime. 'Matrix Mult'

multiplies two square matrices of the same order with the matrix

names and the order as input parameters. The function returns the

resulting matrix product. The functions 'ScalarMatrixMult' uses two

nested 'for' loops to multiply all the elements of an input matrix by

an input scalar and returns the new matrix. 'MatrixVectorMult'

multiplies an input matrix by an input vector and returns the

resulting vector. There is a procedure/function pair for each input

type that displays the corresponding dialog box and checks for

proper responses. For example the step input uses the 'GetStepData*

procedure and the 'GoodStepDataEntered' function as it's check. Due

to the differences between the data required to be input by the user

for each input type, it was not practical to make a generic

procedure/function pair that would work for all four input types.

The procedure 'CalculateMatrixAndVector' uses the above

mentioned matrix manipulation functions to approximate the n

matrix which is then used to calculate the $ and r matrices.

'CalculatePlotPoints' then uses the discrete matrices to calculate

the state values at each time step. A case statement using

150

www.manaraa.com

'timedata.inputtype' is used to calculate the input value at each time

step.

Since there are 1000 calculations and the plot is only about 300

pixels wide, each calculation need not be sent to the screen. The

variable 'timetodraw' holds the value of time that the last point was

sent to the screen. It is incremented by an amount of time

corresponding to 3 pixels on the screen, 'plottime' is the variable

holding the value of time used for each of the 1000 calculations

stepped by T. When 'plottime' increases above 'timetodraw' the

latest value of the output is then calculated and plotted on the

screen and 'timetodraw' is incremented by the 3 pixel value.

One of the first procedures called prior to calculating the data

points is 'CalculatePlotDimensions'. Thus procedure calculates

'delt', the interval used with 'timetoplot' and 'timeintervaP which

is the sample time T. The intervals 'plotmagstep' and 'plottimestep'

are calculated using the 'FindSep' and 'FindRealSep' procedures in

'NumberCrunch' module. These intervals are the steps between

labeled points for the 'y' and time axes on the plot.

As with the other plot modules in MacCAD, the CAD Time Menu

module has the procedure 'DrawBasicPlot' which sets the clip

rectangle to the plot size and saves the Quickdraw graphics as a

picture associated with the 'timePtr' window. 'DoHorizGrid' and

'DoVertGrid' draw the horizontal and vertical grid lines of the plot

and 'DoDataPlot' actually draws the time response curve. This is also

the procedure called when overlapping plots as it does not affect the

plot grid or labels already drawn.

151

www.manaraa.com

'DoTimeMenu' is the only exported procedure in this module. It is

called by the 'CAD Menu Handler' module when the Time Response'

item is selected from the Tools' menu. This is the procedure that

displays the Time Response Dialog box, which is actually an alert

box, that lets the user select Redraw, Overlap or one of the input

types for a new plot. Depending on the response from the alert box,

either 'DoDataPlot' is called, in the case of overlapping plots, or the

procedure/function pair associated with the desired input type.

As with the other plot modules in MacCAD, the plot dimensions

(in pixels) and other numbers such as the total number of

calculations to make, are contained as global constants to the

module. This allows them to be easily changed for future

modification.

I. USERS' TIPS.

A potential stumbling block for the user is forgetting to change

the loop path before examining the time response. If the Nyquist plot

or open loop Bode plot has just been checked, be sure to check the

loop path prior to getting the time response. This applies to using

any of the plots in MacCAD. The user should always know what the

current loop path of the system is before drawing any new plots.

When checking the unit step response, the output may not be

approaching a final value of 1. This could be foreseen by checking

the System block's D.C. gain. This is done by multiplying the

numerator gain constant and s^ term together and dividing by the

152

www.manaraa.com

product of the denominator gain constant and s^ term. If this

resulting value is not 1.0 then the output will probably not approach

the same value as the input. This applies to ramp and sine wave

inputs as well. The D.C. gain should be checked before drawing the

input signal on the plot as described in examples 2 and 3. Checking

the D.C. gain and adjusting the Unity Function appropriately lets the

input signal be adjusted in amplitude for easier comparison with

the output. For example, a sine wave input with a zero to peak

amplitude of 1.0 may yield an output with an amplitude of .5. By

adjusting the Unity Function before plotting the 'input' to make of

the same amplitude as the output makes it easier to compare the

output with a true sine wave.

The default plot parameters are set each time a new plot is

made. The option to have zero at the center or bottom is carried

from one plot to another as is the plot and input amplitudes and max

plot time. This is done as a convenience when repeatedly drawing the

same plot but could cause confusion when changing input types. Be

sure to check all the plot parameters before selecting 'OK' to avoid

unnecessary plotting. The sine wave input does not change the

default setting of the zero location and the impulse input does not

change the input amplitude for any other input type plot.

Since 1000 points are calculated, regardless of the max time to

be plotted this means that the relative accuracy will decrease.

Displaying a sine wave input of a high frequency over a long period

of time may not look like an exact sine wave since it is sampled. If

100 seconds is to be displayed, then the sample interval, T is .1

153

www.manaraa.com

seconds. If the input has a large ramp slope or sine wave frequency,

there could be large changes in the input between each sample.

When selecting the max plot value and max time it is best to use

as round numbers if possible. If an obscure max time such as 1.57

seconds is input, it may not be nicely dividable to give time steps on

the plot. If this is done, the max time may be rounded up to the

nearest 10% and step intervals may not be found. For example, if the

value of 1.57, being a quarter of a period of a 1 rad/sec sine wave

was input in example 3, it would have been rounded up to 1.6 and no

intervals would be displayed. Instead the value 1.75 was used which

was easily divided and a time interval of .25 was used for plot

labeling. If the time plot ever displays time or y labels that do not

meet your needs, try making small adjustments in the Plot

Amplitude or Max Time parameters input.

154

www.manaraa.com

X. MACCAD SUBROUTINES AND LIBRARIES

A. BASIC DESCRIPTION.

This section will basically be Programmers' Notes covering the

significant procedures, functions and libraries not yet mentioned.

Most procedures and functions called in MacCAD are basic PASCAL

commands. Some are characteristic only of the Macintosh and are

located within the computers ROM. Others are included in the library

called 'SANE', the Standard Apple Numeric Environment. Procedures

and functions that have not yet been discussed in earlier sections

are in the 'CAD NumberCrunch' module. The remaining are from the

Programmer's Extender Volumes 1 and 2 libraries and modules. The

SANE and Programmer's Extender libraries will be briefly discussed.

The routines in the 'CAD NumberCrunch* module will be discussed in

depth since they were written by the author especially for MacCAD.

B. SANE LIBRARY.

The Standard Apple Numeric Environment was established by

Apple in an effort to standardize operations concerning the

manipulation of numbers from one type to another and to and from

strings. It also offers other functions such as exponential

capabilities which are not usually available as basic PASCAL

commands.

155

www.manaraa.com

1. Number conversions

Extended numbers can be converted to integers, long

integers, real, double precision, extended and decimal types as well

as to a string. A variety of rounding procedures are also available

using the variable 'RoundDir' to establish the desired rounding

direction criteria.

2. Arithmetic functions

Such functions not normally available in PASCAL, supplied

by the SANE library include Log base 2, and Ln and the ability to

raise a base number to the power of an integer or a real number. The

Tangent function is also available.

3. Financial and other miscellaneous functions

Although not used by MacCAD, financial annuity and

compounding functions are included in SANE. There are functions

concerning the class and sign of input numbers and others set or get

the rounding direction as well as the rounding precision. Many other

routines are available in the SANE library that are not applicable to

MacCAD.

C. PROGRAMMERS EXTENDER.

MacCAD was developed under the 'LightSpeed Pascal'

environment. This is the compiler/linker/editor application that was

used to write MacCAD. 'Programmer's Extender Volumes 1 and 2' are

commercially available packages of libraries and subroutines

written to be used in the 'LightSpeed Pascal' environment. Volume 1

156

www.manaraa.com

offers functions and procedures that assist in the setting up and

control of menus, windows, dialog/alert boxes, controls and other

miscellaneous routines. Volume 2 contains routines for printing,

window stacking, list controlling, popup menus, file input/output

and the manipulation of bitmaps and pictures.

D. NUMBERCRUNCH ROUTINES.

This module started out as having some simple routines used to

convert extended and integer type numbers to and from text strings.

It grew into a library of routines that are shared by more than one

module, such as handling number manipulation, alert/dialog box

control and polynomial arithmetic functions.

1. Writelt procedure

This is used to draw a number at some pixel location using

the Quickdraw routine 'WriteDraw'. The number to be drawn and a

criteria number, usually the same number, are entered as

parameters. According to the size of the criteria number, the pen

position will be moved by the appropriate number of pixels to the

left or right so the drawn number will occupy the same location,

regardless of the size of the number. Very large and very small

numbers will be written in scientific notation. Numbers in between

will have a varying number of digits displayed in order to maintain

the same basic size in pixels.

2. FindSep and FindRealSep functions

These functions are used in calculating the number of

divisions that are to be displayed on the axis of a plot. 'FindSep' is

157

www.manaraa.com

used for integers, such as the magnitude axis of the bode plot. The

max and min values are input as integers along with the starting

number of divisions called 'initscale'. The function checks if

'initscale' can evenly be divided into the range between the max and

min values input. If not, 'initscale' is alternately increased and

decreased in integer steps until an even division is found. When it is

found, the function returns it's value. 'FindRealSep' is used to find

'nice' divisions between extended numbers. The range as an extended

number and the integer 'initscale' are entered. The range is

successively multiplied by 10 until the resulting range is greater

than 100. It is then changed into an integer and 'FindSep' is called to

calculate the number of divisions. 'FindRealSep' then divides the

resulting step size by the same number the range was multiplied by

and returns it.

3. FrameDataError procedure

This is called whenever a dialog box is used and a parameter

input by the user has been checked and found to be in error.

'FrameDataError' is called with a boolean expression, 'firsterr'

signifying the first error found in the dialog box, and an integer

signifying the dialog item of the data box. If 'firsterr' is true, this is

the first error detected. In this case, an alert box is displayed

instructing the user to check the values he has input. The box with the

incorrect data in it is then outlined and that box is selected so the

user can make the first correction without having to move with the

mouse or tab key. If it is not the first error, only the box is outlined.

158

www.manaraa.com

4. ClearAllWindows procedure

This is used before displaying dialog boxes in order to clear

any plot windows that may be presently displayed. It checks if the

front window exists, the window is hidden. This is repeated until all

displayed windows are hidden.

5. FrameCircle procedure

This is like the 'FrameOval' Quickdraw routine except it

draws circles. The circle's center coordinates and the desired radius,

in pixels is entered and the data is converted to call 'FrameOval'.

6. Str2Real and Str2lnt procedure

A string of text of type str255 is input. Each character in

the string is checked to see if it makes a valid integer or extended

number, 'pointused' is a boolean expression used to keep track of the

use of a decimal point for the extended numbers. If the string has

been determined to be correct, it is converted to real number with

the SANE function 'Str2Num'. In the case of 'Str2lnf, the number is

then changed into an integer. For both procedures, if the string is in

the proper format the boolean flag 'valid' is returned as true and

'realout' or 'intout' returns the value.

7. lnt2Str and Real2Str functions

These functions change an integer or extended number into a

string of text. The variable 'typedecform' is used to set the number

style and the number of digits to display. The procedure 'Num2Str' is

then called to make the change. The function is then returned as the

resulting string.

159

www.manaraa.com

8. SetDData procedure

Since data displayed in dialog boxes is always in text

format, 'SetDData' is used to identify the data box of the desired

dialog box and enter the desired text. The dialog pointer, dialog item

and desired text are inputs for this procedure.

9. GetDData procedure

This is the same as 'SetDData' in reverse. The desired dialog

box and it's item are identified and the text presently residing in

that dialog item is returned as the str255 variable 'data'. This

procedure is used when checking for proper number format of the

dialog parameters input by the user.

10. GetCheckReal and GetChecklnt function and procedure

These functions call 'GetDData' and 'Str2ReaP or 'Str2lnf

described above, in order to get the parameter input by the user and

check if it is in the proper format for extended or integer numbers.

The same boolean 'valid' is returned along with the number, if

'valid'.

1 1

.

Basid Alert and Basic2Alert procedures

These procedures display an alert box. Either one or two

strings of text are input along with an integer from to 3 to

identify the type of alert to use. The types are Normal, Note, Caution

and Stop. They are used most often to tell the user that the

operation he has just selected is not appropriate for some reason.

For example he may want to redraw a plot. It a plot has not yet been

drawn, he will be notified by one of these procedures.

160

www.manaraa.com

12. PolvSum function

Polynomials in the coefficient form are often added or

subtracted when calculating equivalent transfer functions. This is

done by the 'PolySum' function. The two polynomials that the

operation is to be done on are input along with the boolean 'addit'

which is true if they are to be added and false if they are to be

subtracted. The function sets the output polynomial's degree to be

equal to the highest degree of the two polynomials input and adds

their corresponding coefficients. The function is returned as the

resulting polynomial.

13. PolvMult function

This function multiplies two input polynomials. It is

returned as a boolean expression that is true if the sum of the two

input polynomials' degrees are less than 20. This ensures that the

resulting polynomial will fit within the 'polycoef variable limits.

Two nested 'for' loops do the multiplication and enter the product

into the output polynomial.

14. FactToCoef function .

A polynomial in factored format is entered and it is

returned in coefficient format. This is done by forming a first order

polynomial from each factor. The first order polynomials are

successively multiplied together using 'PolyMult' from inside a

'while' loop until all factors have been used. The output polynomial's

gain and order are set to those of the input and it is returned by the

function.

161

www.manaraa.com

15. PolvNorm procedure

This normalizes an input 'polycoef by dividing all the

coefficients by the coefficient of the order equal to the polynomial's

degree. The gain constant is then multiplied by the same number.

This makes the highest 's' term's coefficient equal to 1.

16. Log function

The log of the input number is calculated using the 'e' and

natural log relationship. This is used primarily in the Bode plot

calculations since the output is a semi-log plot. If the number is

entered, the output is returned as 1e-20. The function returns the

calculated value of the Log of the input.

17. Ten2 function

This is used to convert back from the Log function

mentioned above. It uses the 'XpwrY' function to calculate '10* raised

to the power of the input number. The function Ten2' returns this

number.

18. FindPhase function

This function effectively returns the phase information of a

conversion from rectangular to polar coordinates. The input variable

is of type 'complex', containing a real and imaginary element. From

the signs of the elements, the quadrant of the number is identified

and the result of the arctan function is adjusted accordingly.

'FindPhase' returns the angle in radians.

19. EvalGeq function

This function evaluates a transfer function in the 's' domain

and returns it's magnitude and phase as a function of the frequency

162

www.manaraa.com

that is input as 'freq'. The function returns the magnitude and the

phase is returned as an output variable. The values are calculated for

both the numerator and the denominator. The resulting magnitudes

are divided and the phases subtracted to give the final values. For

each polynomial, a counter is used starting at 1, increasing to the

polynomial's degree. A 'case' statement and the 'mod' operator are

used to determine if when 's' is replaced with j
* 'freq', will the

result be real or imaginary and what will be the sign after 's' is

raised to it's appropriate power. The values are added in a variable

of type 'complex'. The resulting magnitude is determined from the

root of the sum of the squares of the complex elements and the

phase is determined from the 'FindPhase' function.

20. PoleSRect procedure

This procedure is called when calculating point positions

for the Nyquist plot. It converts from polar to rectangular form with

the output coordinates being in intergers for easy conversion to

pixels. If the magnitude of either coordinate is larger than 500,

which would put the point well off the screen, it is assigned the

value of 500 in order to prevent floating point errors during later

calculations with the point values.

21. DoQuad procedure

This solves for the roots of a 2nd order polynomial using

the quadratic equation. It is called by the 'RootFinder' procedure

which is described in the section covering the 'Root Finder' tool. The

values for 'b' and 'c' are input according to the equation x2 + bx + c,

163

www.manaraa.com

the roots are solved. The roots are output in two variables of type

'complex'.

164

www.manaraa.com

XI. CONCLUSIONS

A. SUMMARYOF PROGRAM

MacCAD offers a user friendly environment for the engineering

student to design and analyze control systems ranging from simple

single block transfer functions to complicated multiple loop

systems consisting of several blocks. All of the usual graphic tools

are available with the Bode, Nyquist, Root Locus and Time Response

plots. The program offers additional options that are not available

on other CAD programs. These include the ability to:

1

.

Overlap any number of plots.

2. Select either linear or logarithmic calculation point

intervals.

3. To add automatically sized labels.

4. To print vertically, horizontally or with 50% reduction.

5. To enter or view any transfer function in either factored or

coefficient form.

6. To add, change, delete, simplify or expand blocks easily.

7. To view several plots simultaneously.

These capabilities along with the standard Macintosh user

friendly, mouse and menu driven operation lets the user spend more

time designing and analyzing his system rather than trying to learn

how to use a new computer program.

165

www.manaraa.com

B. POTENTIAL FOR IMPROVEMENT

There are some options that could still be added to MacCAD.

They include:

1

.

A two parameter Root Locus capability that lets the user

input the polynomial coefficients as functions of two

parameters and then drawing a family of curves in the form of

a grid.

2. Saving data points calculated by the Nyquist plot to a text file

for later viewing or use by a word processing application or

desk accessory. The frequency, magnitude and phase for each

point calculated could be entered in a file designated by the

user as each point is being calculated.

3. The ability to select a gain value for the Root Locus and have

all the roots at that gain displayed.

4. An on line help capability would be useful to the beginning

user for quick reference while running the program.

These improvements would not be complicated to implement.

With the 'project' building structure of 'Lightspeed Pascal' and the

Macintosh's menu driven format, adding the additional modules with

the changes would be very easy.

MacCAD is the first user friendly full function CAD program

available that is both simple enough for the beginning student to

easily use as well as powerful and flexible enough to benefit the

experienced system designer.

166

www.manaraa.com

APPENDIX

SOURCE CODE

The appendix contains the source code of the modules of MacCAD.

Only the modules in the LightSpeed Pascal project written by the

author are listed here. Standard Apple Macintosh libraries and the

modules from the Programmer's Extender volumes are not included.

The modules are not listed in the inverted reference order as they

would appear in the project. A disk is available from Dr. Thaler that

contains the MacCAD source code, the MacCAD resource file and the

MacCAD application.

167

www.manaraa.com

12/02/87 20:56 CAD Main Page 1

MacCAD

version 2.0

02 Dec 1987

author

Kenneth S. MacDonald

system: Apple Macintosh SE
Language: LightSpeed Pascal version 1.11

Libraries: Programmer's Extender vol 1 & 2 version 3.05

Resource: MacCAD. rsrc

developed under System 4.2 and Finder 6.0

MacCAD is a computer aided design program designed for the

graduate level student in Controls or Electrical Engineering. It

offers a flexible block daigram manipulator as well as the standard

graphic design tools, Bode, Nyquist, Root Locus and Time response

plots. It can handle up to a 10th order 's' domain equivalent

transfer function and offers the capability of overlapping plots and

user defined plot calculation and display parameters. It has been

checked to run on both 'old' and 'new' ROMs and requires at least

512 K of RAM.

>rogram Main;

uses
XTTypeDefs, ExtendeM, CADSetUp, CADGIobals, AllClose, WindowTile, DoMenu;

va r

openOrPrint, nofiles : integer;

inforecord : appFile;

legln

XTendlnit;

SetUp;

CountAppFiles(openOrPrint, nofiles);

if nofiles > then
OpenFile(false); { open file}

repeat
repeat
SystemTask;
MaintainCursor(arrow, iBeam, arrow);

until XTGetNextEvent(EveryEvent, event);

HandleEvent(event, whatHappened);

HandfeMenu;

until ExitRequest(whatHappened);

CloseAII;

snd.

168

www.manaraa.com

11/12/87 20:35 CAD Globals Page 1

unit CADGIobals;

interface

uses
XTTypeDefs;

const

{ RESOURCE HANDLING }

toolsmenuno = 200; { menu id numbers
}

blocksmenuno = 300;

windowmenuno = 400;

aboutalertID = 300; { resource id no for about mac cad alert
}

basic2id = 20240; { multipurpse alert with editable text
}

basidid = 12270; { for single text alert boxes
}

displaygrpid = 8246; { displays blocks in group
}

fbackld = 32470; { what type of feedback
}

blkorgrpid = 23853; { display group or block
}

simpformid = 23791; { ask simplification type}

getstringid = 31883; { ask for new block name }

bodesellD = 24703; {
gets bode plot data }

rootid = 23781 ; { ask for poly order to solve}

polyfactid = 13532; { displays factored roots }

nyquistid = 1155; { gets nyquist plot data }

calcpointid = 25487; { displays points during calculation
}

labeldid = 5111; { gets label text strings
}

savelabelalD = 14805; { alert to save new label}

nyqalertid = 13753; { alert for nyquist select
}

rlocusalertid = 20188; { alert for root locus sel}

rlocusid = 5883; { dialog for root locus data}

{ BLOCK HANDLING
}

maxbks = 5;

maxorder = 20;

type
BLOCK DATA STRUCTURES

complex = record { complex number, real and imaginary parts}

justreal : boolean;

realpart : extended;

imagpart : extended;

end;

polyfact = record { factored polynomial
}

degree : integer;

gain : extended;

fact : array[1..20] of complex;

end;

polycoef = record { polynomial in coefficient form
}

degree : integer;

gain : extended;

coef : array[1..20] of extended;

end;

bksHdl = AbksPtr;

bksPtr = Ablock;

grpPtr = Agroup;

grpHdl = AgrpPtr;

group = record

169

www.manaraa.com

11/12/87 20:35 CAD Globals Page :

ownHdl : grpHdl;

maingrp : boolean; {

masterblock : bksHdl;

fwdbks : integer;

backbks : integer;

bksused : array[1..5] of bksHdl;

posFback : boolean;

end;

block m record
{

title : strlng[255];

used : boolean;

changed : boolean;

num : polycoef;

den : polycoef;

factored : boolean;

forward : boolean;

simplified : boolean;

simpform : 1..4;

subgrp : grpHdl;

fromgrpHdl : grpHdl;

end;

PLOT

is it the system group

{ owner of the group

for each block in system }

{ made up from other blocks }

{ handle to group it is from }

plotdata = record
minfreq : integer;

maxfreq : integer;

minmag : integer;

maxmag : integer;

layer : integer;

doit : boolean;

end;

DATA STRUCTURES
{ data for bode and nyquist plots

}

{

v a r

{ MENU HANDLEING
applemenu, fileMenu, editMenu, toolsmenu, blocksmenu, windowmenu : MenuHandle;

{ CURSOR HANDLEING }

iBeam, cross, plus, watch : Cursor;

{ EVENT HANDLEING }

event : EventRecord; { these types are in XTTypeDefs
}

whatHappened : EventStuff;

{ WINDOW HANDLEING }

bodeR, rootR, nyqR, timeR : WindowRecord;

bodePtr, rootPtr, nyqPtr, timePtr : WindowPtr;

plotclipH : RgnHandle;

radius : integer;

firstnyquistrun : boolean;

{- RESOURCE

{

{

{

{ only one time.

HANDLEING —

for Nyquist plot clip region
}

nyquist plot radius }

ensure nyq clip rgn declared
}

}

}

fRefNum : integer;

{ DIALOG HANDLEING
Title, NumOrder, DenOrder, Path, Factored : str255;

{ text input to dialog boxes }

itemType : integer; { used to get and change text from d-boxes
}

itemNum : integer;

170

www.manaraa.com

11/12/87 20:35

itemHndl : handle;

DP : DialogPtr;

displayrect : rect;

mO, ml, m2, m3 :

ignore : integer;

saveit : boolean;

CAD Globals Page 3

sysgroupH : grpHdl;

sysblockH : bksHdl;

unusedblock : block;

unusedgrpPtr : grpPtr;

unusedgrpHdl : grpHdl;

noblock : block;

unityblock : block;

editnewblock : boolean;

bodedata : plotdata;

nyquistdata : record
minfreq : extended;

maxfreq : extended;

minmag : integer;

maxmag : integer;

layer : integer;

linear : boolean;

pointstoplot : integer;

doit : boolean;

end;

timedata : record
inputtype : integer;

maxtime : extended;

amp : extended;

impamp : extended;

autoimpamp : boolean;

zerobottom : boolean;

freq : extended;

slope : extended;

dcoff : extended;

maxy : extended;

layer : integer;

doit : boolean;

end;

RLocusdata : record

mingain : extended;

maxgain : extended;

points : integer;

xmin : extended;

xmax : extended;

ymin : extended;

ymax : extended;

linear : boolean;

layer : integer;

simptype : boolean;

doit : boolean;

str255;

{ for alert boxes
}

{ if cancel not hit on D-box

BLOCK HANDLEING

{ inputting new blocks and root finder }

PLOT HANDLEING }

{ true => linear, false => logrithmic
}

{ true => Geq, false => closed loop
}

171

www.manaraa.com

11/12/87 20:35 CAD Globals

end;

savereply : SFReply; { for saving data to file
}

implementation
end.

172

www.manaraa.com

11/12/87 20:35 CAD SetUp Page 1

unit CADSetUp;

interface

uses
XTTypeDefs, Extender!, Extend2Stuff, CADGIobals, SANE;

procedure InitBks;

procedure SetUp;

implementation

{
- InitBks procedure

}

procedure InitBks;

va r

counter : integer;

begin

sysblockH := BksHdl(NewHandle(Sizeof(block))); { define sysblockH
}

sysgroupH := grpHdl(NewHandle(Sizeof(group))); { define sysgroupH
}

with sysgroupH AA do
begin

ownHdl := sysgroupH;

fwdbks := 0;

backbks := 0;

maingrp := true;

masterblock := sysblockH;

posFback := false;

end;

noblock.fromgrpHdl := sysgroupH;

for counter := 1 to maxbks do
begin

sysgroupH AA.bksused[counter] := BKSHDL(NewHandle(Sizeof(BLOCK)));

sysgroupH AA .bksused[counter] AA := noblock;

end;

with sysblockH AA do
begin

subgrp := sysgroupH;

title := 'Main System';

factored := true;

forward := true;

used := true;

changed := false;

simplified := true;

end;

end;

}

procedure SetUp;

; SetUpWindows —
[Sets up windows used for tools menu.

}

173

www.manaraa.com

11/12/87 20:35 CAD SetUp Page 2

procedure SetUpWindows;

const
top 38;

left = 0;

bottom = 250;

right = 400;

moverect = 38;

va r

temprect : rect;

begin
SetRect(temprect, left, top, right, bottom);

bodePtr := CreateWindow(bodeR, temprect, 'Bode Plot', 8, false, true, true, true, true);

. OffsetRect(temprect, moverect, moverect);

rootPtr := CreateWindow(rootR, temprect, 'Root Locus', 8, false, true, true, true, true);

OffsetRect(temprect, moverect, moverect);

nyqPtr := CreateWindow(nyqR, temprect, 'Nyquist Plot', 8, false, true, true, true, true);

OffsetRect(temprect, moverect, moverect);

timePtr := CreateWindow(timeR, temprect, Time Response', 8, false, true, true, true, true);

TextFace([bold]);

end; { SetUpWindows }

SetUpMenues }

procedure SetUpMenues;

begin

mO
ml
m2
m3
StdMenus(applemenu, fileMenu, editMenu);

DeleteMenu(fileid);

DeleteMenu(editid);

filemenu := BuildMenu(fileid, 'File', 'New;Open/0;Save;Save As;Print/P;Quit/Q');

editmenu := BuildMenu(editid, 'Edit', 'Cut;Copy;Paste;Clear');

blocksmenu := BuildMenu(blocksmenuno, 'Blocks', 'Change/E;Add New Block/A;Simplify To

Block/S;Delete Block/D;Expand To Group/G');

toolsmenu := BuildMenu(toolsmenuno, 'Tools', 'Bode Plot/B;Root Locus/R;Nyquist Plot/N;Time

Response/T;Root Finder/F;Add Label/L');

windowmenu := BuildMenu(windowmenuno, 'Windows', 'Full Tile/W;Vert Tile/V;Horiz

Tile/H;Stack/X;Show Plots/Z;Move Back/M;Close Front/C);

SetMenultem(applemenu, 1, 'About MacCAD');

EnableAllltems(applemenu, true);

EnableAllltems(filemenu, true);

EnableAllltems(editmenu, true);

EnableAllltems(windowmenu, true);

end; { SetUpMenues
}

I nitUnity Block procedure
}

procedure InitUnityBlock;

va r

counter : integer;

begin

with noblock do
begin

174

www.manaraa.com

11/12/87 20:35 CAD SetUp Page 3

used := false;

title := 'no block';

changed := false;

simplified := false;

end;

with unityblock do
begin

factored := false;

used := true;

with num do
begin
gain := 1.0;

degree := 0;

coef[1] := 1.0;

for counter := 2 to 20 do
coef[counter] := 0;

end;

with den do
begin

gain := 1.0;

degree := 0;

coef[1] := 1.0;

for counter := 2 to 20 do
coef[counter] := 0;

end;

end;

end;

•InitPlotData procedure
}

procedure InitPlotData;

begin

with nyquistdata do
begin

minfreq := 0.01;

maxfreq := 1000;

minmag := 0;

maxmag := 5;

linear := false;

layer := 0;

pointstoplot := 200;

doit := true;

end;

firstnyquistrun := true; { so the clip region will be declared only once
}

with bodedata do
begin

minfreq := -2;

maxfreq := 3;

minmag := -40;

maxmag := 40;

layer := 0;

doit := true;

end;

175

www.manaraa.com

11/12/87 20:35 CAD SetUp Page 4

with timedata do
begin

inputtype := 1;

maxtime := 10;

amp := 1;

impamp := 1000 / maxtime;

autoimpamp := true;

zerobottom := true;

freq := 1;

slope := 1;

dcoff := 0;

maxy := 1.25;

doit := true;

layer := 0;

end;
with RLocusdata do
begin

mingain := 0.1;

maxgain := 10;

xmin := -10;

xmax := 2;

ymin := -10;

ymax := 10;

points := 25;

linear := true;

layer := 0;

simptype := true;

doit := true;

end; { with RLocus}

end;

{ SetUp procedure-

begin
HideAII;

fRefNum := OpenResFile('MacCAD.Rsrc');

SetUpMenues;

InitUnityBlock;

InitBks;

InitPlotData;

savereply.good := false;

FetchCursors(iBeam, cross, plus, watch);

ignore := Alert(aboutalertlD, nil);

SetUpWindows;

end;

end.

176

www.manaraa.com

11/12/87 18:39 CAD Menu Handler Page 1

unit DoMenu;

interface

uses
XTTypeDefs, Extender"!, CADGIobals, Nyquist, SANE, Time, NumberCrunch, DoBlockMenu, simpgroup,

bode, RFinder, AddLabel, RootLocus, CADSetUp, WindowTile, PrintWindow;

procedure HandleMenu;

Implementation

procedure HandleMenu;

HandleAppleMenu'
Calls alert box for About MacCad

}

procedure HandleAppleMenu;

begin

with whatHappened do
case ItemNum of

1 :

begin

ignore := Alert(aboutalertlD, nil);

end;

otherwise

end;

end; { HandleAppleMenu }

HandleFileMenu
Calls procedures needed by File menu selections

procedure HandleFileMenu;

begin

with whatHappened do
case ItemNum of

1 : { new
}

begin
ignore := CautionAlert(5901, nil);

if ignore = 2 then
begin

savereply.good := false;

InitBks;

DoAddBlock;

end;

end;

2 : { Open}

begin

OpenFile(false);

end;

3 : { save
}

begin

avereply.good := true;}

SaveFile;

177

www.manaraa.com

11/12/87 18:39 CAD Menu Handler Page 2

end;

4 : { save as
}

begin

savereply.good := false;

SaveFile;

end;

5 : { print}

DoPrintMenu;

otherwise

end { case
}

end;

{ HandleBlocksMenu }

{ Calls procedures needed by Block menu selections. Calls DoBlockMenu procedures}

procedure HandleBlocksMenu;

begin
ClearAIIWindows;

with whatHappened do
case ItemNum of

1 : { Change }

begin
ChangeBlock;

end;

2 : {Add Block }

DoAddBlock;

3 : { Simplify
}

begin

if (sysgroupH AA .fwdbks + sysgroupH AA .backbks) > then

DoSimplifyGroup

else
Basic1Alert(There are no blocks in the system.', 1);

end;

4 : { Delete}

begin

DeleteBlock;

end;

5 : { Expand }

ExpandBlock;

otherwise

end; { ItemNum case }

end; { HandleBlocksMenu }

{ HandleWindowMenu }

procedure HandleWindowMenu;

begin

with whatHappened do
DoWindowMenu(itemnum);

end; { HandleWindowMenu }

HandleToolsMenu
procedure HandleToolsMenu;

178

www.manaraa.com

11/12/87 18:39 CAD Menu Handler Page 3

begin

with whatHappened do
case ItemNum of

1 : { Bode Plot }

DoBodeMenu;

2 : { Root Locus }

begin
DoRLocusMenu;

end;

3 : { Nyquist }

DoNyquistMenu;

4 : { Time Response }

begin
DoTimeMenu;

end;

5 : { Root Finder }

begin
ClearAIIWindows;

DoRFinderMenu;

end;

6 : { Label}

DoLabelMenu;

otherwise

end; { ItemNum case }

end; { HandleToolsMenu }

}

• HandleMenu procedure
}

va r

temperr : OSerr;

begin

with whatHappened do
case MenuNum of

appleid : { apple menu selected }

HandleAppleMenu;

toolsmenuno : { Tools menu selected }

HandleToolsMenu;

blocksmenuno : { Blocks Menu selected }

HandleBlocksMenu;

filelD :

HandleFileMenu;

editID :

temperr := DoEditMenu(whatHappened);

windowmenuno :

HandleWindowMenu;

otherwise

end; { with MenuNum }

end;

nd.

179

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 1

unit NumberCrunch;

interface
uses
XTTypeDefs, Extender"!, CADGIobals, sane;

procedure Writelt (numout : extended;

criteria : extended);

function FindSep (max, min : longint;

initscale : integer) : integer;

function FindRealSep (var max : extended;

initscale : integer) : extended;

procedure FrameDataError (var firsterr : boolean;

item : integer);

procedure ClearAIIWindows;

procedure FrameCircle (x, y : integer;

rad : extended);

procedure Str2Real (stringin : str255;

var realout : extended;

var valid : boolean);

procedure Str2lnt (stringin : string;

var Intout : integer;

var valid : boolean);

procedure Pole2Rect (mag, phase : extended;

var x : integer;

var y : integer);

function Log (input : extended) : extended;

function EvalGeq (blocktouse : block;

freq : extended;

var phase : extended) : extended;

function lnt2Str (intin : integer) : string;

function Real2Str (realin : extended;

accurate : boolean) : string;

procedure SetDData (DP : DialogPtr;

itemno : integer;

data : str255);

procedure GetDData (DP : DialogPtr;

itemno : integer;

var data : str255);

function GetCheckReal (DP : DialogPtr;

Itemno : integer;

var realout : extended) : boolean;

procedure GetChecklnt (DP : DialogPtr;

Itemno : integer;

var Intout : integer;

var valid : boolean);

procedure DoQuad (b, c : extended;

var compl, comp2 : complex);

function Ten2 (exponent : extended) : extended;

procedure RootFinder (polycin : polycoef;

var polyfout : polyfact;

accurate : boolean);

procedure PolyNorm (var polyin : polycoef);

function PolyMult (polyl : polycoef;

poly2 : polycoef;

180

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 2

var polyout : polycoef) : boolean;

function PolySum (polyl : polycoef;

Addit : boolean;

poly2 : polycoef) : polycoef;

function FactToCoef (polyin : polyfact) : polycoef;

procedure BasidAlert (textout : str255;

alerttype : integer);

procedure Basic2Alert (textl, text2 : str255;

alerttype : integer);

Implementation

(Writelt procedure
}

procedure Writelt;{(numout : extended;criteria : extended);}

begin

if (abs(criteria) < 0.001) or (abs(criteria) > 1000) then
WriteDraw(numout)

else if abs(criteria) < 0.01 then
WriteDraw(numout : 4 : 4)

else if abs(criteria) < 1 then
WriteDraw(numout : 4 : 3)

else

WriteDraw(numout : 8 : 1);

end;

FindSep function }

function FindSep;{(max, min:longint, initscale : integer) : integer;}

var
scale, interval : integer;

begin

scale := initscale;

interval := 0;

while (max - min) mod scale <> do
begin

interval := interval + 1;

If scale <= initscale then

scale := scale + interval

else

scale := scale - interval;

end;

FindSep := (max - min) div scale;

end;

FindRealSep function }

function FindRealSep;{(var max : extended;initscale : integer) : extended;}

var
newmax : extended;

maxint : longint;

multiplier : extended;

begin

multiplier := 1;

repeat
multiplier := multiplier * 10.0;

newmax := multiplier * max;

until newmax > 100.000001;

maxint := Num2Longint(newmax);

max := maxint / multiplier;

181

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 3

FindRealSep := FindSep(maxint, 0, initscale) / multiplier;

end;

{ FrameDataError procedure
}

procedure FrameDataError; {(firsterr : boolean;item : integer)}

begin

if firsterr then
begin
hidewindow(DP);

Basid AlertfPlease ensure you are inputting appropriate values.', 1); { show error alert }

showwindow(dp);

SellText(DP, item, 0, 255);

firsterr := false;

end;
FrameDltem(DP, item);

end;
{ ClearAIIWindows procedure

}

procedure ClearAIIWindows;

va r

windowtoclear : WindowPtr;

begin

repeat
windowtoclear := FrontWindow;

if windowtoclear <> nil then
HideWindow(windowtoclear);

until windowtoclear = nil;

end;

{ Framed re le procedure }

procedure FrameCircle; { (x, y:integer,rad : extended);}

va r

radint : integer;

begin

radint := Num2lnteger(rad);

FrameOval(y - radint, x - radint, y + radint, x + radint);

end;

{ Str2Real }

{ checks each character in text to ensure that is real number. "Valid" is the }

{ boolean error checking flag. If it is good, the text is changed to a real num. }

procedure Str2Real;

va r

firstchar, otherchar, onlychar : set of char;

tempchar : char;

counter : integer;

pointused : boolean;

begin

pointused := false; { flag showing if decimal point has been used. }

valid := true; { number is good until proven otherwise }

firstchar := [T, '2', '3', '4', '5', '6', 7\ '8', '9', '0', '-', '.'];{ valid first characters
}

onlychar := ['1',
,

2', '3', '4\ '5', '6', 7\ '&', '9', '0'];

otherchar := [T, '2\ '3', '4', '5', '6', 7', '8', '9', '0', '.'];
{ valid other characters}

if length(stringin) = 1 then
begin

tempchar := copy(stringin, 1,1); { get first character }

if not (tempchar in onlychar) then

182

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 4

valid := false;

end
else If length(stringin) > 1 then

begin

tempchar := copy(stringin, 1,1); {get first character }

if tempchar In firstchar then { check for good first char }

(if first is good, check the rest up through the length of the text }

begin

if tempchar = '.' then { check if first char was a decimal point}

pointused := true; { decimal point has been used.}

for counter := 2 to length(stringin) do
begin

tempchar := copy(stringin, counter, 1);

if (tempchar in otherchar) then { if other chars are good}

begin
If (tempchar = '.') then

If pointused then

valid := false

else
pointused := true;

end
else

valid := false;

end;

end
else
valid := false; { if first char is not good }

end
else

valid := false;

If valid then
realout := str2Num(stringin) { if good, make the change

}

else

valid := false;

end;

Str2lnt -
}

checks each character in text to ensure that is an integer. "Valid" is the
}

boolean error checking flag. If it is good, the text is changed to ainteger. }

see STr2Real for explaination of procedure code
}

procedure Str2lnt;

va r

goodchar, firstchar : set of char;

tempchar : char;

counter : integer;

begin

valid := true;

firstchar := [T, '2', '3', '4*, *5', '6\ 7\ '8', '9', '0', '-'];

goodchar := [T, '2', '3\
,

4
,

1

'5', '&', 7', '8', '9', '0'];

If length(stringin) = 1 then
begin

tempchar := copy(stringin, 1, 1);

If not (tempchar In goodchar) then
valid := false;

183

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 5

end
else If length(stringin) > 1 then
begin

tempchar := copy(stringin, 1, 1);

If not (tempchar in firstchar) then
valid := false;

If length(stringin) > 1 then
for counter := 2 to length(stringin) do
begin

tempchar := copy(stringin, counter, 1);

if not (tempchar In goodchar) then
valid := false;

end;

end
else
valid := false;

if valid then
Intout := Num2lnteger(str2Num(stringin))

else
Intout := 0;

end;

{ lnt2Str }

(changes an integer to a string for returning to dialog boxes
}

function lnt2Str;

va r

tempext : extended;

typedecform : decform;

tempstring : decstr;

begin

typedecform. style := FixedDecimal;

typedecform. digits := 0;

tempext := intin;

num2str(typedecform, tempext, tempstring);

lnt2Str := tempstring;

end;

{ Real2Str -
}

{ changes a real no. to a string for return to dialog boxes
}

function Real2Str;

v ar
typedecform : decform;

tempstring : decstr;

begin
typedecform. style := fixeddecimal;

typedecform. digits := 15;

num2str(typedecform, realin, tempstring);

Real2Str := tempstring;

end;

{ SetDData }

{ puts the input text to the editable dialog box location
}

procedure SetDData;

begin

GetDltem(DP, itemno, itemType, itemhndl, displayrect);

SetlText(itemhndl, data);

184

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 6

end;

{ GetDData }

{ returns the text string located at the item number in the dialog box indicated
}

procedure GetDData;

begin

GetDltem(DP, itemno, itemType, itemhndl, displayrect);

GetlText(itemhndl, data);

end;

{ GetCheckReal }

function GetCheckReal;

va r

tempstring : str255;

valid : boolean;

begin

realout := 0;

GetDData(DP, itemno, tempstring);

Str2Real(tempstring, realout, valid);

GetCheckReal := valid;

end;

{ GetChecklnt }

procedure GetChecklnt;

va r

tempstring : str255;

begin

GetDData(DP, itemno, tempstring);

Str2lnt(tempstring, intout, valid);

end;

{ Basic 1 Alert }

procedure Basid Alert ;{(textout:str255;alerttype: integer)}

begin

m3 := textout;

ParamText(mO, ml, m2, m3);

case alerttype of

ignore := Alert(basic1id, nil);

1

2

3

ignore := StopAlert(basic1id, nil);

otherwise

end; { case}

m3 := ";

ParamText(mO, ml, m2, m3);

end;

{ Basic2Alert
procedure Basic2Alert;{(text1 :str255;text2:str255;alerttype:integer)}

begin

m2 := textl;

m3 := text2;

ParamText(mO, ml, m2, m3);

185

ignore := NoteAlert(basic1id, nil);

ignore := CautionAlert(basic1id, nil);

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page

case alerttype of

:

ignore := Alert(basic2id, nil);

1 :

ignore := NoteAlert(basic2id, nil);

2 :

ignore := CautionAlert(basic2id, nil);

3 :

ignore := StopAlert(basic2id, nil);

otherwise
>

end; { case}

m2 := ";

m3 := ";
.

ParamText(mO, ml, m2, m3);

end;

{ PolySum }

function PolySum;

{ (
polyl : polycoef; Addit : boolean; poly2 : polycoef) : polycoef;}

va r

plus, tempxa, tempxb, tempxc : extended;

counter : integer;

temppoly : polycoef;

begin
for counter := (polyl .degree + 2) to 20 do
polyl .coef[counter] := 0;

for counter := (poly2.degree + 2) to 20 do
begin

poly2.coef[counter] := 0;

temppoly. coef[counter] := 0;

end;

if polyl.degree > poly2.degree then

temppoly.degree := polyl .degree

else
temppoly.degree := poly2.degree;

If addit then
plus := 1.0

else

plus := -1.0;

for counter := 1 to 20 do
temppoly.coeffcounter] := polyl. gain * polyl .coef[counter] + plus * poly2.gain * poly2.coef[counter];

temppoly.gain := 1.0;

PolySum := temppoly;

end;

{ PolyMult }

function PolyMult;

{ (
polyl : polycoef; poly2 : polycoef; var polyout : polycoef) : boolean;}

va r

x, y : integer;

tempA, tempB, tempC : extended;

begin

if polyl. degree + poly2.degree < 20 then

begin

186

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 8

for x := 1 to 20 do
polyout.coef[x] := 0;

for x := 1 to polyl .degree + 1 do
begin

for y := 1 to poly2.degree + 1 do
begin

polyout.coef[x + y - 1] := polyl .coef[x] * poly2.coef[y] + polyout.coef[x + y - 1];

end;

end;

PolyMult := true;

end
else

PolyMult := false;

polyout.degree := polyl .degree + poly2. degree;

polyout.gain := polyl.gain * poly2.gain;

end;

{ FacttoCoef -
}

function FactToCoef;

{ (
polyin : polyfact) : polycoef;

}

va r

startpoly, nextpoly : polycoef;

a, b : extended;

counter : integer;

onlyreal : boolean;

begin

counter := 1;

startpoly.gain := 1.0;

startpoly.degree := 0;

startpoly.coef[1] := 1;

nextpoly.gain := 1;

while counter <= polyin.degree do
begin

a := polyin. fact[counter].realpart;

b := polyin. fact[counter].imagpart;

onlyreal := polyin. fact[counter].justreal;

if onlyreal then
begin

nextpoly.degree := 1

;

nextpoly. coef[2] := 1;

nextpoly.coef[1] := a;

counter := counter + 1

;

end
else
begin

nextpoly.degree := 2;

nextpoly.coef[3] := 1;

nextpoly. coef[2] := 2 * a;

nextpoly. coef[1] := sqr(a) + sqr(b);

counter := counter + 2;

end;

if PolyMult(startpoly, nextpoly, startpoly) then

end;

187

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page i

startpoly.gain := polyin.gain;

FactToCoef := startpoly;

end;
{--> ---- PolyNorm }

procedure PolyNorm; {(var polyin : polycoef);}

{ this normalizes a polynomial by dividing all values by most significant
}

{ coef. }

var
normno : extended;

counter, n : integer;

begin

n := polyin. degree;

n := n + 1 ;
{ids most sig coef

}

normno := polyin. coeffn];

polyin.gain := polyin.gain * normno;

If normno <> then

for counter := 1 to n do
begin
polyin. coef[counter] := polyin. coef[counter] / normno;

end;

end;

{ Log procedure }

function Log; {(input : extended) : extended}

begin

if input = then
input := 1e-20;

Log := 0.434294482 * In(input);

end;

{ Ten2 function }

function Ten2; {(exponent : extended) : extended}

begin

Ten2 := XpwrY(10.0, exponent);

end;
{-- FindPHase function }

{ input a complex value and the arctan, in radians is returned.
}

function FindPhase (value : complex) : extended;

const
halfpi = 1.5707963;

var
theta, phase : extended;

begin

if value. realpart <> then
begin

theta := abs(value.imagpart / value. realpart);

If value. realpart > then
begin

If value. imagpart >= then

phase := arctan(theta)

else
phase := arctan(-theta) + 4 * halfpi;

end
else
begin

188

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 10

If value. imagpart > then

phase := -arctan(theta) + 2 * halfpi

else
phase := arctan(theta) + 2 * halfpi;

end;

end
else

begin { if the real part is zero, phase = +/- 1/2 pi
}

If value.imagpart > then

phase := halfpi

else
phase := 3 * halfpi; .

end;

FindPhase := phase;

end;

EvalGeq function }

function EvalGeq; {(blocktouse : block, freq : extended var phase:extended) : extended;}

va r

totmag, newmag : extended;

newphase, totphase : extended;

nummag, denmag : complex;

counter : integer;

begin

nummag. realpart := 0;

nummag.imagpart := 0;

denmag. realpart := 0;

denmag.imagpart := 0;

with blocktouse do
begin

with num do
begin

for counter := 1 to degree + 1 do
begin
newmag := coef[counter] * Xpwrl(freq, counter - 1);

case ((counter - 1) mod 4) of

: {s raised to 0, 4, 8... powers
}

nummag. realpart := nummag. realpart + newmag;
1 : {s raised to 1,5,9... powers}

nummag. imagpart := nummag. imagpart + newmag;

2 : {s raised to 2,6,10... powers
}

nummag. realpart := nummag. realpart - newmag;

3 : {s raised to 3,7,11... powers
}

nummag. imagpart := nummag. imagpart - newmag;
end; {case num

}

end; {for counter
}

end; {with num}
newphase := FindPhase(nummag);

totmag := num. gain * sqrt(sqr(nummag. realpart) + sqr(nummag. imagpart));

with den do
begin

for counter := 1 to degree + 1 do
begin

189

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page

newmag := coef[counter] * Xpwrl(freq, counter - 1);

case ((counter - 1) mod 4) of

: {s raised to 0, 4, 8... powers }

denmag.realpart := denmag.realpart + newmag;
1 : (s raised to 1,5,9... powers}

denmag.imagpart := denmag.imagpart + newmag;

2 : {s raised to 2,6,10... powers
}

denmag.realpart := denmag.realpart - newmag;

3 : {s raised to 3,7,11... powers }

denmag.imagpart := denmag.imagpart - newmag;

end; {case den
}

end; {for counter }

end; {with den }

phase := newphase - FindPhase(denmag);

EvalGeq := (totmag / (den.gain * sqrt(sqr(denmag.realpart) + sqr(denmag.imagpart))));

end; {with blocktouse}

end;

{ Pole2Rect procedure
}

procedure Pole2Rect; { mag,phase:extended; var x,y:integer)}

va r

tempvalue : extended;

begin

x := 500;

y := 500;

tempvalue := mag * cos(phase);

if abs(tempvalue) < 500 then

x := Num2lnteger(tempvalue);

tempvalue := -mag * sin(phase);

if abs(tempvalue) < 500 then

y := Num2lnteger(tempvalue); { y is mult by -1 because of Mac screen layout
}

end;

{ DoQuad }

procedure DoQuad; {(b , c : extended;var compl, comp2 : complex)}

{
puts (sA2 +bs +c) into form (s+comp1)(s+comp2)}

var
radno, realno, four, two : extended;

begin

four := 4.00;

two := 2.00;

radno : b * b / four - c;

realno := b / two;

if radno >= then
begin

compl.justreal := true;

comp2.justreal := true;

compl. realpart := realno + sqrt(radno);

comp2.realpart := realno - sqrt(radno);

compl. imagpart := 0.0;

comp2.imagpart := 0.0;

end
else
begin

compl.justreal := false;

190

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 12

comp2.justreal := false;

compl.realpart := realno;

comp2.realpart := realno;

compl.imagpart := sqrt(-radno);

comp2.imagpart := -sqrt(-radno);

end;

end;

[
RootFinder }

procedure RootFinder; {(polycin : polycoef; var polyfout : polyfact;accurate:boolean);}

RootFinder changes a coef poly to a fact poly, by findeing the roots
}

of the coef equation. }

const
maxit = 5000;

var
a, b, c : array[1..23] of extended;

P, Q, delP, delQ, denom, epsilon : extended;

iteration, counter, n : integer;

finished, firstit : boolean;

multiplier : extended;

qispos, qwaspos, pispos, pwaspos : boolean;

inlimits : boolean;

begin

pwaspos := true;

qwaspos := true;

If accurate then
epsilon := 0.0000001

else

epsilon := 0.01;

PolyNorm(polycin);

n := polycin.degree;

polyfout. gain := polycin.gain;

polyfout.degree := n;

while (polycin.coef[1] = 0.0) and (n > 0) do { if s=0 is a root }

begin

with polyfout.fact[n] do { load first root value }

begin

realpart := 0;

imagpart := 0;

justreal := true;

finished := true;

end;

for counter := 1 to n + 1 do { shift the coef values
}

polycin.coef[counter] := polycin. coef[counter + 1];

n := n - 1; { decrease the 'order'
}

end;

for counter := 3 to n + 3 do
A[counter] := polycin.coef[n + 4 - counter];{ load poly coef into A array

}

for counter := 1 to 23 do
B[counter] := 0.0;

C := B;

iteration := 1;

finished := false;

P := 0.0;

191

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 13

If A[4] < then
P := -2;

Q := 0.0;

delP := 0;

delQ :- 0;

multiplier := 1.0;

{ if poly is of order 2 or less
}

case n of

:

begin
finished := true; { poly of order }

end;
1 :

with polyfout.fact[1] do
begin
realpart := a[4];

imagpart := 0;

justreal := true;

finished := true;

end;

2 :

begin { poly is quadradic
}

DoQuad(A[4], A[5], polyfout.factp], polyfout.fact[2]);

finished := true;

end;

otherwise

end; { case }

{ BEGINNING OF BAIRSTOWS METHOD OF ITERATION }

while (not finished) and (iteration < maxit) do
begin

for counter := 3 to n + 3 do
begin

B[counter] := A[counter] - P * B[counter - 1] - Q * B[counter - 2];

C[counter] := B[counter] - P * C[counter - 1] - Q * C[counter - 2];

end;

denom := C[n + 1] * C[n + 1] - (C[n + 2] - B[n + 2])
* C[n];

If denom <> then

begin

delP := (B[n + 2] * C[n + 1] - B[n + 3] * C[n])
#

multiplier / denom;

delQ := (C[n + 1] * B[n + 3] - (C[n + 2] - B[n + 2]) * B[n + 2]) * multiplier / denom;

P := P + delP;

Q := Q + delQ;

if (abs(P) > epsilon) and (abs(Q) < epsilon) then { if Q is very small }

inlimits := (abs(delP / P) + abs(delQ)) < epsilon

else if (abs(P) < epsilon) and (abs(Q) > epsilon) then { if P is small, just imag
}

inlimits := (abs(delP) + abs(delQ / Q)) < epsilon { roots
}

else If (abs(P) > epsilon) and (abs(Q) > epsilon) then { both P & Q are large }

inlimits := ((abs(delP / P) + abs(delQ / Q)) < epsilon)

else { both are small
}

inlimits := ((abs(delP) + abs(delQ)) < epsilon);

192

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 14

If inlimits then { limit requirements met }

begin

DoQuad(P, Q, polyfout.fact[n], polyfout.fact[n - 1]);

n := n - 2;

case n of

:

finished := true;

1 :

begin
polyfout.fact[n].realpart := B[n + 3] / b[n + 2];

polyfout.fact[n].imagpart := 0.0;

polyfout.fact[n].justreal := true;

finished := true;

end;

2 :

begin
DoQuad(B[n + 2], B[n + 3], polyfout.fact[n], polyfout.fact[n - 1]);

finished := true;

end;

otherwise
begin

A := B;

iteration := 1;

multiplier := 1.0;

p := 0;

q := 0;

pwaspos := true;

qwaspos := true;

end;

end; {case}

end
else

iteration := iteration + 1

;

end
else
begin

P := P + 1

;

Q := Q + 1

;

iteration := 1;

end;

If delP > then
pispos := true

else

pispos := false;

if delQ > then

qispos := true

else
qispos := false;

If ((pwaspos = not pispos) and (q = 0) or (p = 0) and (qwaspos = not qispos) or (pwaspos = not

pispos) and (qwaspos = not qispos)) and (iteration > 1) then

multiplier := multiplier / 2;

pwaspos := pispos;

qwaspos := qispos;

193

www.manaraa.com

11/21/87 16:38 CAD Number Cruncher Page 15

end;{ while }

If iteration = maxit then
Basic2Alert('Run Time Error.', ' Do not accept the data. It will be unreliable. Sorry!', 2);

end;

{ END-ALL ----- .—-—

}

end.

194

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 1

jnit DoBlockMenu;

nterface

uses
XTTypeDefs, Extenderl, CADGIobals, NumberCrunch, sane, simpgroup;

va r

fbackchanged : boolean;

function LoadPolyCoefErrorCheck (DP : DialogPtr;

var polyin : polycoef) : boolean;

function LoadPolyFactErrorCheck (DP : DialogPtr;

var polyin : polyfact) : boolean;

procedure CheckPolyCoef (var polycin : polycoef);

procedure LoadPolyCoef (textout : string;

var polyin : polycoef);

procedure LoadPolyFact (textout : string;

var polyin : polyfact);

procedure ShiftPolyc (var polycin : polycoef);

procedure GetFactoredData (var tempblock : block);

procedure OldCoefDataOut (var polyout : polycoef);

procedure OldFactDataOut (polyin : polyfact);

procedure GetCoefData (var tempblock : block);

procedure FrameError (DP : DialogPtr;

itemno : integer;

Ialertid : integer;

var flag : boolean);

procedure PutBlocklnGroup (var tempblock : block;

var tempgroup : group);

function AddBlockErrorCheck (DP : DialogPtr;

var tempgroup : group;

var tempblock : block) : boolean;

procedure DisplayGroup (titleout : str255;

var blockoutHdl : bksHdl;

var groupout : grpHdl;

var showit : boolean;

exceptsimplified : boolean);

procedure LoadAddBlockData (var blocktochange : block);

195

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 2

procedure UpdateData (var groupchanged : group);

procedure DoSimplifyGroup;

procedure ChangeBlock;

procedure DeleteBlock;

procedure EditBlock (var grouptochange : group;

var blocktochange : block;

newblock : boolean);

procedure DoAddBlock;

procedure CheckBlockGone (blockgone : block);

procedure ExpandBlock;

implementation
{ Add Block Section }

{ FrameError }

{ frames the box with the data that is in the incorrect format
}

procedure FrameError;

begin

if (not flag) then { error alert has not yet been shown }

begin

hidewindow(DP);

ignore := StopAlert(alertid, nil); { show error alert }

• showwindow(dp);

SellText(DP, itemno, 0, 255);

flag := true; { set flag that error alert shown and there was error
}

end;

FrameDltem(DP, itemno);

end;

{ LoadPolyCoefErrorCheck }

function LoadPolyCoefErrorCheck;

var
counter, index : integer;

showerrbox : boolean;

realout : extended;

begin

m3 := "Input error. Please check that real numbers are being entered.';

ParamText(mO, ml, m2, m3);

showerrbox := false;

if getcheckreal(DP, 3, realout) then

polyin.gain := realout

else
FrameError(DP, 3, basidid, showerrbox);

index := polyin.degree + 1;

for counter := 4 to polyin.degree + 4 do
begin

If GetcheckReal(DP, counter, realout) then

196

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 3

polyin.coef[index] := realout

else
FrameError(DP, counter, basidid, showerrbox);

index := index - 1;

end;

for counter := polyin.degree + 2 to 20 do
polyin.coef[counter] := 0;

loadpolycoeferrorcheck := not showerrbox;

end;

LoadPolyFactErrorCheck

function LoadPolyFactErrorCheck;

{(DP : DialogPtr; var polyin : polyfact)}

va r

counter, index, realno, imagno, order : integer;

showerrbox : boolean;

realout : extended;

textreal, textimag : str255;

begin

order := 0;

m3 := 'Input error. Please check that real numbers are being entered.';

ParamText(mO, ml, m2, m3);

showerrbox := false;

if GetCheckReal(DP, 3, realout) then

polyin.gain := realout

else

begin

FrameError(DP, 3, basidid, showerrbox);

If not showerrbox then
SellText(DP, 3, 0, 255);

end;

index := 1;

for counter := 2 to 11 do
begin

realno := 2 * counter;

imagno := realno + 1;

GetDData(DP, realno, textreal);

GetDData(DP, imagno, textimag);

if ((textreal = ") and (textimag <> ")) then
begin

FrameError(DP, imagno, basidid, showerrbox);

FrameError(DP, realno, basidid, showerrbox);

if not showerrbox then
SellText(DP, realno, 0, 255);

end
else If GetCheckReal(DP, realno, realout) then
begin

polyin. fact[index].realpart := realout;

polyin.fact[index + 1].realpart := realout;

order := order + 1

;

If textimag = " then
begin

197

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 4

polyin.fact[index].imagpart := 0;

polyin.fact[index].justreal := true;

index := index + 1;

end
else If GetCheckReal(DP, imagno, realout) then

begin

order := order + 1;

polyin.fact[index].imagpart := realout;

polyin.fact[index].justreal := false;

polyin.fact[index + 1].imagpart := -realout;

polyin.fact[index + 1].justreal := false;

index := index + 2;

end
else
begin
FrameError(DP, imagno, basidid, showerrbox);

If not showerrbox then
SellText(DP, imagno, 0, 255);

end;

end
else If not ((textreal = ") and (textimag = ")) then
begin

FrameError(DP, realno, basidid, showerrbox);

If not showerrbox then
SellText(DP, realno, 0, 255);

end;

end;

if order <> polyin.degree then

begin

m3 := The number of roots does not equal the degree input earlier. Please try again.';

ParamText(mO, ml, m2, m3);

SellText(DP, 4, 0, 255);

FrameError(DP, 1, basidid, showerrbox);

end;

LoadPolyFactErrorCheck := not showerrbox;

end;
{- OldCoefDataOut }

procedure OldCoefDataOut;{
(

polyout:polycoef)}

va r

counter, index : integer;

begin

SetDData(DP, 3, Real2Str(polyout.gain, true));

index := polyout.degree + 1

;

for counter := 4 to polyout.degree + 4 do
begin

SetDData(DP, counter, Real2Str(polyout.coef[index], true));

index := index - 1

;

end;

end;

{
- CheckPolyCoef }

procedure CheckPolyCoef; { polycin:polycoef)}

va r

198

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 5

counter, order : integer;

done : boolean;

begin

done := false;

order := polycin.degree + 2;

repeat
order := order - 1;

If polycin.coef[order] <> 0.0 then

done := true;

until done or (order = 1);

polycin.degree := order - 1;

If (polycin.degree = 0) and (polycin.coef[1] = 0) then

begin

polycin.gain := 0;

polycin.coef[1] := 1;

end;

end;

{ LoadPolyCoef }

procedure LoadPolyCoef;

va r

message : str255;

index, idno : integer;

doagain : boolean;

temppolycoef : polycoef;

begin

temppolycoef := polyin;

mO := textout;

ParamText(mO, ml, m2, m3);

index := polyin.degree;

idno := 7100 + index;

doagain := true;

DP := GetNewDialog(idno, nil, pointer(-l));

if not editnewblock then
OldCoefDataOut(polyin);

SellText(DP, 3, 0, 255);

while doagain do
begin

FrameDltem(DP, 1);

ModalDialog(nll, itemNum);

if itemNum = 2 then
begin
saveit := false;

doagain := false

end
else

doagain := not LoadPolyCoefErrorCheck(DP, temppolycoef)

end;

if itemNum = 1 then
begin

CheckPolyCoef(temppolycoef);

polyin := temppolycoef;

end

199

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 6

else
saveit := false;

DisposDialog(DP);

end;

{ Old Fact DataOut
}

procedure OldFactDataOut;{ (polyin:polyfact)
}

va r

textout : str255;

counter, index, rootcount, order : integer;

begin
order := polyin. degree;

counter := 4;

index := 1;

rootcount := 0;

textout := Real2Str(polyin.gain, true);

SetDData(DP, 3, textout);

If order > then
repeat

if polyin. fact[index].justreal then
begin
textout := Real2Str(polyin.fact[index].realpart, true);

SetDData(DP, counter, textout);

rootcount := rootcount + 1

;

counter := counter + 2;

index := index + 1

;

end
else
begin
textout := Real2Str(polyin.fact[index].realpart, true);

SetDData(DP, counter, textout);

counter := counter + 1

;

textout := Real2Str(abs(polyin.fact[index].imagpart), true);

SetDData(DP, counter, textout);

counter := counter + 1

;

rootcount := rootcount + 2;

index := index + 2;

end;

until rootcount >= order;

end;

{ LoadPolyFact }

procedure LoadPolyFact;

va r

counter, index : integer;

doagain : boolean;

temppolyfact : polyfact;

begin

temppolyfact := polyin;

mO := textout;

ml := lnt2Str(polyin. degree);

ml := concat(The degree is ', ml);

ParamText(mO, ml, m2, m3);

doagain := true;

DP := GetNewDialog(polyfactid, nil, pointer(-l));

200

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 7

If not editnewblock then

begin
OldFactDataOut(polyin);

end;

while doagain do
begin

SellText(DP, 3, 0, 255);

FrameDltem(DP, 1);

ModalDialog(nil, itemNum);

If itemnum = 2 then

begin

saveit := false;

doagain := false

end
else
doagain := not LoadPolyFactErrorCheck(DP, temppolyfact)

end;

if itemnum = 1 then
polyin := temppolyfact

else

saveit := false;

DisposDialog(DP);

end;

ShiftPolyc }

procedure ShiftPolyc;
{

(polycin:polycoef)}

va r

shiftby, counter, order : integer;

done : boolean;

begin

done := false;

order := polycin.degree;

shiftby := 0;

for counter := order + 1 downto 1 do { find the amout to shift

}

If polycin. coef[counter] = 0.0 then
begin

if not done then
shiftby := shiftby + 1

;

end
else

done := true;

for counter := order + 1 downto shiftby + 1 do { shift the coeffs

}

polycin. coef[counter] := polycin. coef[counter - shiftby];

for counter := shiftby downto 1 do {set coefs below 'shiftby' = }

polycin.coef[counter] := 0;

end;

GetFactoredData }

procedure GetFactoredData;{ var tempblock:block}

va r

polyfin : polyfact;

shiftedpoly : polycoef;

begin

polyfin.degree := tempblock.num.degree;

If not editnewblock then

201

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 8

begin
SetCursor(watch);

shiftedpoly := tempblock.num;

ShiftPolyc(shiftedpoly);

DP := GetNewDialog(12466, nil, pointer(-l));

DrawDialog(DP);

RootFinder(shiftedpoly, polyfin, true);

DisposDialog(DP);

SetCursor(arrow);

end; .

LoadPolyFact('Numerator Data', polyfin);

if saveit then
tempblock.num := FactToCoef(polyfin);

polyfin.degree := tempblock. den. degree;

if not editnewblock then
begin

SetCursor(watch);

shiftedpoly := tempblock.den;

ShiftPolyc(shiftedpoly);

DP := GetNewDialog(12466, nil, pointer(-l));

DrawDialog(DP);

RootFinder(shiftedpoly, polyfin, true);

DisposDialog(DP);

SetCursor(arrow);

end;

if (saveit or not (editnewblock)) then
LoadPolyFact('Denominator Data', polyfin);

if saveit then
tempblock.den := FactToCoef(polyfin);

end;

{ GetCoefData }

procedure GetCoefData; { (var tempblock:block)
}

begin

LoadPolyCoef('Numerator Data', tempblock.num);

if (saveit or not (editnewblock)) then
LoadPolyCoef('Denominator Data', tempblock.den);

end;

{ PutBlocklnGroup }

procedure PutBlocklnGroup; { (var tempblock:block; var tempgroup:group
) }

var
counter : integer;

done : boolean;

begin

done := false;

If tempblock. factored then
GetFactoredData(tempblock)

else
GetCoefData(tempblock);

counter := 0;

if editnewblock and saveit then

begin

202

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 9

tempblock.simplified := false; { set block parameters}

tempblock.used := true;

repeat
counter := counter + 1;

If not (tempgroup.bksused[counter] A\used) then

begin

done := true;

If saveit then
begin
tempblock.fromgrpHdl := tempgroup.ownHdl;

tempgroup.bksused[counter]AA := tempblock;

if tempblock.forward then
tempgroup.fwdbks := tempgroup.fwdbks + 1

else
tempgroup.backbks := tempgroup.backbks + 1;

If tempgroup.backbks + tempgroup.fwdbks = 1 then

begin
ParamText(tempgroup.masterblockAA . title, ", ", ");

tempgroup.masterblockAA .simpform := alert(simpformid, nil);

ParamText(mO, ml, m2, m3);

end;

end;

end;

until done;

end;

end;

{ AddBlockErrorCheck
function AddBlockErrorCheck;

const
addblockerralertid = 16494;

va r

shownbox : boolean;

valid : boolean;

tempreal : extended;

tempint : integer;

title : str255;

begin

fbackchanged := false;

shownbox := false; { set flag - no errors yet }

GetDData(DP, 8, Title); { get title text
}

if Length(title) > 100 then { title too long
}

FrameError(DP, 8, addblockerralertid, shownbox)

else
tempblock.title := title;

GetChecklnt(DP, 9, tempint, valid);

{ change dialog text to integer, check validity}

It not (valid and (tempint >= 0) and (tempint <= 10)) then
FrameError(DP, 9, addblockerralertid, shownbox)

else
tempblock.num.degree := tempint;

203

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 1

GetChecklnt(DP, 10, tempint, valid);

if not (valid and (tempint >= 0) and (tempint <= 10)) then

FrameError(DP, 10, addblockerralertid, shownbox)

else
tempblock.den.degree := tempint;

GetDData(DP, 11, path);

if not ((path = T) or (path = 'F') or (path = 'b') or (path = 'B')) then
FrameError(DP, 11, addblockerralertid, shownbox)

else if (path = T) or (path = 'F') then { want forward path }

begin

if (not editnewblock) and (tempblock. forward = false) then { not new block but changed f-back}

begin

with tempgroup do
begin

fwdbks := fwdbks + 1

;

backbks := backbks - 1

;

end;

end;

tempblock.forward := true;

end
else { want back path }

begin

If (not editnewblock) and (tempblock.forward = true) then { not new block but changed f-back}

begin
with tempgroup do
begin
fbackchanged := true;

fwdbks := fwdbks - 1

;

backbks := backbks + 1

;

end;

end;

if editnewblock then
fbackchanged := true;

tempblock.forward := false;

end;

GetDData(DP, 12, factored);

If not ((factored = T) or (factored = 'F') or (factored = 'c') or (factored = 'C')) then
FrameError(DP, 12, addblockerralertid, shownbox)

else If (factored = T) or (factored = 'F') then
tempblock.factored := true

else
tempblock.factored := false;

AddBlockErrorCheck := not shownbox; { if error alert box not shown, => no errors }

end;

{ DisplayGroup }

{ Display the dialog box showing the blocks in the loop
}

{ and return the block that needs to be changed.
}

procedure DisplayGroup;

{(titleout : str255;var blockoutHdl : bkshdl;var groupout:grpHdl;var showit : bool; exceptsimplified:bool);}

204

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 11

va r

fwdno, backno, counter, tempitemtype : integer;

flagHdl : array[2..11] of bksHdl;

newblock : block;

DialogDisposed : boolean;

temptext : str255;

nextgroupout : grpHdl;

begin

DialogDisposed := false;

showit := true;

DP := GetNewDialog(displaygrpid, nil, pointer(-l));

fwdno := 2;

backno := 7;

FrameDltem(DP, 1);

FrameDltem(DP, 12); { feedback box }

FrameDltem(DP, 19); { simpform box}

SetDData(DP, 13, titleout);

for counter := 1 to 5 do
if groupoutAA.bksused[counter] AA .used then

begin { load the forward blocks column
}

if groupoutAA.bksused[counter] AA . forward then

begin

flagHdl[fwdno] := groupoutAA.bksused[counter];

SetDData(DP, fwdno, groupoutAA .bksused[counter] AA . title);

FrameDltem(DP, fwdno);

fwdno := fwdno + 1

;

end
else { load the back blocks column

}

begin

flagHdl[backno] := groupoutAA .bksused[counter];

SetDData(DP, backno, groupoutAA.bksused[counter]AA . title);

FrameDltem(DP, backno);

backno := backno + 1;

end;

end;

for counter := fwdno to 6 do
begin { disable rest of forward path boxes

}

getDitem(DP, counter, itemtype, itemHndl, displayrect);

tempitemtype := itemtype + 128;

setDitem(DP, counter, tempitemtype, itemhndl, displayrect);

end;

for counter := backno to (11) do
begin { disable rest of feedback path boxes}

getDitem(DP, counter, itemtype, itemHndl, displayrect);

tempitemtype := itemtype + 128;

setDitem(DP, counter, tempitemtype, itemhndl, displayrect);

end;

case groupout AA .masterblockAA .simpform of { output simp form data
}

1 :

SetDData(DP, 19, 'Geq');

205

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page

2 :

SetDData(DP, 19, 'Forward Path');

3 :

SetDData(DP, 19, 'Open Loop');

4 :

SetDData(DP, 19, 'Closed Loop');

end;

If groupoutAA .posfback then

SetDData(DP, 12, ' P')

else

SetDData(DP, 12, ' N');

FrameDltem(DP, 17);

ModalDialog(nll, itemNum);

If (itemnum > 1) and (itemnum < 12) then

begin
blockoutHdl := flagHdl[itemnum];

If blockoutHdl AA.simplified then

begin
DisposDialog(DP);

DialogDisposed := true;

ParamText(blockoutHdl AA . title, ", ", ");

if not exceptsimplified then
ignore := 1

else
ignore := Alert(blkorgrpid, nil);

ParamText(mO, ml, m2, m3);

if ignore 1 then { show blocks in that group
}

begin
nextgroupout := blockoutHdl AA .subgrp;

temptext := Concat(Omit(titleout, 13, 255), blockoutHdl AA .title);

DisplayGroup(temptext, blockoutHdl, nextgroupout, showit, exceptsimplified);

end;

end;

end
else if itemnum = 12 then
begin

showit := false;

ignore := Alert(fbackld, nil);

if ignore = 1 then
groupoutAA.posFback := false

else
groupoutAA.posFback := true;

UpdateData(groupoutAA);

end
else if itemnum = 19 then { change simplification form}

begin

showit := false;

ParamText(groupoutAA.masterblock AA . title, ", ", ");

groupoutAA .masterblockAA .simpform := Alert(simpformlD, nil);

ParamText(mO, ml, m2, m3);

UpdateData(groupoutAA);

206

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 13

end
else If itemnum = 17 then

begin
showit := false;

DialogDisposed := true;

DisposDialog(DP);

EditBlock(groupoutAA , newblock, true);

UpdateData(groupoutAA);

end
else
showit := false;

if not DialogDisposed then

DisposDialog(DP);

end;

{ LoadAddBlockData }

procedure LoadAddBlockData;{(blocktochange);}

begin

SetDData(DP, 8, blocktochange.title);

SetDData(DP, 9, lnt2Str(blocktochange. num. degree));

SetDData(DP, 10, lnt2Str(blocktochange.den. degree));

if blocktochange. forward then

SetDData(DP, 11, 'F')

else

SetDData(DP, 11, 'B');

SetDData(DP, 12, 'C');

end;

{
CheckBlockGone }

procedure CheckBlockGone; {(blockgone : block)}

begin

with blockgone.fromgrpHdlAA do
begin

If blockgone. forward then { adjust # of blocks in blockgone's group}

fwdbks := fwdbks - 1

else
backbks := backbks - 1

;

If fwdbks + backbks = then { was only block in it's group
}

begin

If not maingrp then
begin

masterblockAA.used := false;

CheckBlockGone(masterblockAA);

end
else

UpdateData(sysgroupH AA
);

end { if = }

else { was not only block in group
}

UpdateData(blockgone.fromgrpHdlAA);

end;{ first with
}

end;

{ DeleteBlock }

procedure DeleteBlock;

va r

grpname : str255;

207

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 1

dodelete : boolean;

blocktodeleteHdl : bksHdl;

tempgrpH : grpHdl;

begin

If (sysgroupHAA.fwdbks + sysgroupH A\backbks > 0) then

begin
tempgrpH := sysgroupH;

DisplayGroup('Delete from System Group", blocktodeleteHdl, tempgrpH, dodelete, false);

if (dodelete) then

begin

m3 := blocktodeleteHdlAA .title;

ParamText(mO, ml, m2, m3);

if (CautionAlert(811, nil) = 2) then
begin
blocktodeleteHdlAA.used := false;

CheckBlockGone(blocktodeleteHdlAA);

end;
end;

end
else
BasiclAlert(There are no blocks in the system.', 1);

end;

{
• EditBlock }

{ displays dialog box getting info for new block.
}

procedure EditBlock; {var grouptochange:group,var blocktochange:block,newblock:boolean)}

const
addblockid = 18142;

OKnum = 1;

fbackld = 32470;

var
doagain : boolean;

bksingrp : integer;

msg1, msg2, bksmsg : str255;

begin

editnewblock := newblock;

saveit := true;

bksingrp := grouptochange.fwdbks + grouptochange.backbks;

if editnewblock then
begin

bksingrp := bksingrp + 1;

end;

msgl := 'Block # ';

msg2 := int2str(bksingrp);

bksmsg := ConCat(msg1, msg2);

if bksingrp > maxbks then

Basid Alert('No more blocks can be added to this group. Try simplification.', 3)

else
begin

ClearAIIWindows;

DP := GetNewDialog(addblockid, nil, pointer(-l));

If not editnewblock then

begin

mO := 'Edit Block Data';

208

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 15

LoadAddBlockData(blocktochange);

end
else
begin

mO := 'Add New Block Data';

SetDData(DP, 8, bksmsg);

end;

ParamText(mO, ml, m2, m3);

doagain := true;

SellText(DP, 8, 0, 255);

while doagain do
begin

FrameDltem(DP, 1);

ModalDialog(nll, itemNum);

if itemNum = 2 then

doagain := false

else
doagain := not AddBlockErrorCheck(DP, grouptochange, blocktochange)

end;

DisposDialog(DP);

If itemNum = OKnum then

begin

PutBlocklnGroup(blocktochange, grouptochange. ownHdl AA
);

If (not blocktochange.forward) and (grouptochange.backbks = 1) and fbackchanged then

begin
ignore := Alert(fbackid, nil);

if ignore = 1 then
grouptochange.posfback := false

else
grouptochange.posfback := true;

end;

end;

end;

end;

{ Update Data }

procedure UpdateData; {(groupchanged : group)}

va r

tempblock, noblockl, noblock2 : block;

begin

if GeqGroup(groupchanged, groupchanged. masterblockAA .simpform, tempblock, noblockl, noblock2) then

begin

groupchanged. masterblockA\num := tempblock.num;

groupchanged. masterblockAA .den := tempblock.den;

if not groupchanged. maingrp then

UpdateData(groupchanged.masterblockAA .fromgrpHdl AA);

end
else

Basic1Alert(The order of the group blocks are to high to simplify.', 2);

end;

ChangeBlock }

procedure ChangeBlock;

209

www.manaraa.com

11/11/87 22:45 CAD Block Menu

va r

tempgroupH : grpHdl;

tempblock : block;

grpname : str255;

dochange : boolean;

blocktoshowHdl : bksHdl;

begin
tempgroupH := sysgroupH;

tempblock := sysblockHAA
;

if (sysgroupH AA.fwdbks + sysgroupH AA.backbks > 0) then { there are blocks }

begin

ParamText(sysblockH AA
.title

1
", ", ");

ignore := Alert(blkorgrpid, nil); { want to see sysblock or sysgroup}

ParamText(mO, ml, m2, m3);

if ignore = 2 then {want sysblock }

Editblock(tempgroupH AA , tempblock, false) { data will not be changed
}

else
begin
DisplayGroupfChange from System Group', blocktoshowHdl, sysgroupH, dochange, true);

if dochange then

begin
EditBlock(tempgroupH AA

, blocktoshowHdl AA
, false);

UpdateData(blocktoshowHdl AA .fromgrpHdl AA);

end;

end;

end
else
Basid Alert(There are no blocks in the system.', 1);

end;

{
- Do Add block }

procedure DoAddblock;

va r

tempblock, noblockl, noblock2 : block;

begin

EditBlock(sysgroupH AA , tempblock, true);

if GeqGroup(sysgroupH AA
, sysblockH AA.simpform, tempblock, noblockl, noblock2) then

begin

sysblockH AA.num := tempblock. num;

sysblockH AA.den := tempblock.den;

UpdateData(sysgroupH AA
);

end
else
Basid Alert(The order of the group blocks are to high to simplify.', 2);

end;

{
---- -- DoSimplifyGroup--- }

procedure DoSimplifyGroup;

begin

SimpSysGroup;

UpdateData(sysgroupH AA
);

end;

{ ExpandBlock }

210

www.manaraa.com

11/11/87 22:45 CAD Block Menu Page 17

procedure ExpandBlock;

va r

grpname : str255;

doexpand : boolean;

blocktoexpandHdl : bksHdl;

tempgrpH, newgroupH : grpHdl;

tempgrpPtr : grpPtr;

counter : integer;

stringout : str255;

begin

If (sysgroupH AA.fwdbks + sysgroupHAA.backbks > 0) then

begin
tempgrpH := sysgroupH;

DisplayGroup('Expand from System Group.', blocktoexpandHdl, tempgrpH, doexpand, false);

If (doexpand) then

begin

newgroupH := grpHdl(NewHandle(Sizeof(group)));

blocktoexpandHdl AA
. simplified := true;

blocktoexpandHdl AA.simpform := 1;

blocktoexpandHdlAA.subgrp := newgroupH;

with newgroupHAA do
begin

ownHdl := newgroupH;

fwdbks := 1;

backbks := 0;

maingrp := false;

masterblock := blocktoexpandHdl;

posFback := false;

for counter := 1 to maxbks do
begin
bksused[counter] := BksHdl(NewHandle(Sizeof(Block)));

bksused[counter] AA := noblock;

end; { for }

bksused[1] AA := blocktoexpandHdlAA
;

bksused[1] AA . forward := true;

bksused[1] AA.used := true;

bksused[1]AA . simplified := false;

bksused[1] AA.fromgrpHdl := newgroupH;

blocktoexpandHdlAA . title := Concat(blocktoexpandHdl AA
. title, ' Group');

end;{ with
}

UpdateData(blocktoexpandHdl AA.fromgrpHdl AA);

stringout := ConcatfThe block has been replaced with a group titled - ', blocktoexpandHdl A\ title)

Basid Alert(stringout, 0);

end;{ if doexpand}

end { if blocks in sysgroup

}

else

Basid AlertfThere are no blocks in the system.', 1);

end;

nd. { end module }

211

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page

unit Bode;

Interface
uses
XTTypeDefs, Extender"!, CADGIobals, NumberCrunch, sane;

procedure DoBodeMenu;

implementation
const
bodedatalD = 20645;

plotpen = 2;

botmar = 35;

topmar = 58;

Itmar = 35;

rtmar = 35;

scrnht = 285;

scrnwd = 493;

va r

WD : WData;

bodePic, newPic : PicHandle;

bodeclipsize, plotrect : rect;

plotwd, plotht : integer;

LRC, ULC : point;

{ GoodBodeDataEntered procedure
}

function GoodBodeDataEntered : boolean;

va r

tempminfreq, tempmaxfreq, tempminmag, tempmaxmag : integer;

firsterr, valid, datagood, tempdoit : boolean;

phaseinc : str255;

begin

datagood := true;

firsterr := true;

GetChecklnt(DP, 9, tempminfreq, valid); { check minfreq
}

If not valid then
begin

datagood := false;

FrameDataError(firsterr, 9);

end;

GetChecklnt(DP, 10, tempmaxfreq, valid); { check maxfreq
}

If ((not valid) or (tempmaxfreq <= tempminfreq)) then
begin

datagood ;= false;

FrameDataError(firsterr, 10);

end;

GetChecklnt(DP, 13, tempminmag, valid); { check minmag
}

if not valid then
begin

datagood := false;

FrameDataError(firsterr, 13);

end;

GetChecklnt(DP, 14, tempmaxmag, valid); { check maxfreq
}

212

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page 2

If ((not valid) or (tempmaxmag <= tempminmag)) then

begin
datagood := false;

FrameDataError(firsterr, 14);

end;

GetDData(DP, 16, phaseinc); { Check to include phase plot }

if (phaseinc = *y') or (phaseinc = V) then

tempdoit := true

else if (phaseinc = 'n') or (phaseinc = 'N') then

tempdoit := false

else
begin

datagood := false;

FrameDataError(firsterr, 16);

end;

GoodBodeDataEntered := datagood;

If datagood then

with bodedata do
begin
minfreq := tempminfreq;

maxfreq := tempmaxfreq;

minmag := tempminmag;

maxmag := tempmaxmag;

doit := tempdoit;

end;

end;

{ InitBodeData procedure }

procedure InitBodeData;

begin

DP := GetNewDialog(bodedatalD, nil, pointer(-l));

SellText(DP, 9, 0, 255); { select the min freq input block }

with bodedata do
begin { initialize the dialog data

}

SetDData(DP, 9, lnt2Str(minfreq));

SetDData(DP, 10, lnt2Str(maxfreq));

SetDData(DP, 13, lnt2Str(minmag));

SetDData(DP, 14, lnt2Str(maxmag));

if doit then
SetDData(DP, 16, T)

else

SetDData(DP, 16, 'N');

end;

end;

{ GetBodeData procedure

procedure GetBodeData (var continue : boolean);

va r

doagain : boolean;

begin

continue := true;

213

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page

doagain := true; { init flag to show dialog box }

InitBodeData; { set up bode dialog box }

while doagain do
begin
FrameDltem(DP, 1);

ModalDialog(nll, itemNum);

If itemNum - 2 then
begin

continue := false;

doagain := false;

end
else
begin
ClearAIIWindows;

doagain := not GoodBodeDataEntered;

end;

end;

DisposDialog(DP);

end;

{ Wd2Freq function }

{ input the horizontal position and the appropriate frequency is returned }

function Wd2Freq (hpos : integer) : extended;

begin

with bodedata do
Wd2Freq := Ten2((maxfreq - minfreq) / plotwd * (hpos - Itmar) + minfreq);

end;

{ Freq2Wd function :
}

function Freq2Wd (freq : extended;

var wd : integer) : boolean;

va r

inbounds : boolean;

freqpos : extended;

begin

inbounds := true;

freqpos := log(freq);

with bodedata do
begin

If (maxfreq > freqpos) and (freqpos > minfreq) then

begin

wd := Itmar + Num2lnteger((freqpos - minfreq) * plotwd / (maxfreq - minfreq));

end
else
inbounds := false;

end;

Freq2Wd := inbounds;

end;

{ Mag2Ht function }

function Mag2Ht (mag : extended;

var ht : integer) : boolean;

214

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page 4

va r

inbounds : boolean;

begin

inbounds := true;

with bodedata do
begin

if (maxmag >= mag) and (mag >= minmag) then

ht := topmar + Num2lnteger((maxmag - mag) * plotht / (maxmag - minmag))

else
inbounds := false;

end;

Mag2Ht := inbounds;

end;

{ DrawHorzLine procedure }

procedure DrawHorzLine;

const
initscale = 7;

va r

scale, magline, mag : integer;

strout : str255;

begin

scale := FindSep(bodedata.maxmag, bodedata.minmag, initscale); { change to no. of units per division}

mag := bodedata.minmag;

repeat
If Mag2Ht(mag, magline) then

begin

strout := lnt2Str(mag);

If (bodedata.minmag < mag) and (bodedata. maxmag > mag) then

DrawLine(ltmar, magline, (scrnwd - rtmar - 1), magline);

MoveTo(ltmar - 5 - StringWidth(strout), magline + 5);

DrawString(strout);

end;

mag := mag + scale;

until mag > (bodedata. maxmag);

if Mag2Ht(0, magline) then

begin

pensize(2, 2);

DrawLine(ltmar, magline, (scrnwd - rtmar - 2), magline);

pensize(1, 1);

end;

end;

DrawVertLine procedure }

procedure DrawVertLine (freq : extended);

va r

horspos : integer;

begin

if Freq2Wd(freq, horspos) then
Drawline(horspos, topmar, horspos, (topmar + plotht - 1));

end;

Freq2Str function }

change frequency from its exponent to a string with min length
}

215

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page

function Freq2Str (expo : integer) : str255;

var
strout : str255;

counter : integer;

begin
strout := T;
if expo > then { if freq is greater than 1

}

for counter := 1 to expo do
strout := concat(strout, '0');

if expo < then { if freq is less than 1
}

begin

for counter := 1 to -expo do
if counter > 1 then { skips first zero if exp is -1

}

strout := concat('0', strout);

strout := concat('.\ strout)

end;

if (expo < -3) or (expo > 3) then
strout := concat('1 e', lnt2Str(expo));

Freq2Str := strout;

end;

{ PlotMag procedure }

procedure PlotMag;

const
freqposstep = 2;

twopi = 6.2831853;

va r

freq : extended;

oldmagpoint, newmagpoint, oldphasepoint, newphasepoint : point;

tempmag, tempphase : extended;

maght, freqpos : integer;

wasinplot, firstpoint : boolean;

begin

ClipRect(plotrect);

firstpoint := true;

wasinplot := false;

freqpos := Itmar - freqposstep;

DP := GetNewDialog(calcpointid, nil, pointer(-l));

SetDData(DP, 1, 'Calculating data points. Please be patient!');

SetDData(DP, 2, lnt2Str(plotwd + Itmar));

repeat
pensize(2, 2);

freqpos := freqpos + freqposstep;

freq := Wd2Freq(freqpos);

tempmag := 20.0 * log(EvalGeq(sysblockH AA
, freq, tempphase));

if Mag2Ht(tempmag, maght) then

begin

newmagpoint.h := freqpos;

newmagpoint.v := maght;

if wasinplot then { last value was displayed in plot
}

begin

DrawLine(oldmagpoint.h, oldmagpoint. v, newmagpoint.h, newmagpoint.v);

216

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page 6

DrawLine(oldmagpoint.h, oldmagpoint.v, newmagpoint.h, newmagpoint.v);

oldmagpoint := newmagpoint;

end
else
begin
oldmagpoint := newmagpoint;

wasinplot := true;

end;

end;

tempphase := -tempphase; { change to a positive angle for plotting
}

while tempphase < do
tempphase := twopi + tempphase;

while tempphase > twopi do
tempphase := tempphase - twopi;

newphasepoint.h := freqpos;

newphasepoint.v := topmar + num2integer(tempphase * plotht / twopi);

pensize(3, 3);

if bodedata.doit then

begin

if firstpoint then
firstpoint := false

else
DrawLine(oldphasepoint.h, oldphasepoint.v, newphasepoint.h, newphasepoint.v);

end;

oldphasepoint := newphasepoint;

SetDData(DP, 2, lnt2Str(plotwd + Itmar - freqpos));

until freqpos >= plotwd + Itmar;

DisposDialog(DP);

pensize(1, 1);

ClipRect(bodeclipsize);

end;

{ DrawBasicPlot procedure
}

procedure DrawBasicPlot;

va r

index, counter, numpos : integer;

numout : str255;

freq : extended;

begin

plotrect.topleft := ULC; { outline for plot }

plotrect.botright := LRC;

pensize(plotpen, plotpen);

penpat(black);

framerect(plotrect);

pensize(1, 1);

DrawHorzLine;

begin

MoveTo(!tmar, (topmar + plotht + 12)); { draw first freq label}

DrawString (Freq2Str(bodedata.minfreq));

end;

freq := Ten2(bodedata.minfreq);

for index := bodedata.minfreq to bodedata.maxfreq do
begin

If Freq2Wd(freq, numpos) then

217

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page j

begin
MoveTo(numpos, (topmar + plotht + 12)); { draw freq below axis }

DrawString(Freq2Str(index));

end;

for counter := 1 to 9 do
If index < bodedata.maxfreq then

begin
freq := counter * Ten2(index);

DrawVertLine(freq);

end;

MoveTo(ltmar + Num2lnteger((plotwd - StringWidth('Frequency (Rads/sec)')) / 2), scrnht - 11);

DrawString('Frequency (Rads/sec)');

end;

PenNormal;

end;

{ LabelPhase procedure }

procedure LabelPhase;

const
hoffset = 25;

voffset = 0;

va r

hpos, vpos, sep, counter : integer;

begin
sep := plotht dlv 12;

for counter := to 12 do
begin

penpat(gray);

vpos := topmar + counter * sep;

If (0 < counter) and (counter < 12) then
DrawLine(ltmar, vpos, Itmar + plotwd - 1, vpos);

case counter of

:

begin

moveto(ltmar + plotwd + 3, topmar + voffset);

penpat(black);

DrawString('O');

end;

3 :

begin

move(3, voffset);

penpat(black);

DrawString('-90');

end;

6 :

begin

move(3, voffset);

DrawString('-180');

end;

9 :

begin

move(3, voffset);

penpat(black);

DrawStringC-270');

218

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page 8

12 :

begin
moveto(ltmar + plotwd + 3, topmar + plotht + voffset);

penpat(black);

DrawStringC-360');

end;

otherwise

end;

end;

end;

{ DoBodeMenu procedure }

procedure DoBodeMenu;

va r

dotheplot : boolean;

begin

plotht := scrnht - topmar - botmar;

plotwd := scrnwd - Itmar - rtmar;

LRC.v := topmar + plotht;

LRC.h := Itmar + plotwd;

ULC.v := topmar;

ULC.h := Itmar;

SetRect(bodeclipsize, 0, 0, 512, 323);

itemnum := alert(bodesellD, nil);

TextFace([bold]);

case itemnum of

1 : { seelect redraw
}

begin

If (sysgroupH AA .fwdbks + sysgroupH A\backbks > 0) then

begin

If bodedata. layer > then

begin

ShowWindow(bodePtr);

SelectWindow(bodePtr);

end
else

Basic1Alert('A Bode plot has not yet been drawn.', 1);

end
else
Basic1A!ert(There are no blocks in the system.', 1);

end;

2 : { select new plot

}

begin
If (sysgroupHAA.fwdbks + sysgroupH AA.backbks) > then

begin
ClearAIIWindows;

GetBodeData(dotheplot);

If dotheplot then
begin

ShowWindow(bodePtr);

SelectWindow(bodePtr);

ClipRect(bodeclipsize);

219

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page 9

bodePic := OpenPicture(bodeclipsize);

SetCursor(watch);

LabelPhase;

DrawBasicPlot;

PlotMag;

PenNormal;

ClipRect(bodeclipsize);

ClosePicture;

SetWPic(bodePtr, bodePic);

SetCursor(arrow);

bodedata.layer := 1

;

end;

end
else
Basid Alert(There are no blocks in the system.', 1);

end;

3 : { select overlap
}

begin

If (sysgroupH A\fwdbks + sysgroupH AA.backbks) > then
begin

if bodedata.layer > then
begin
bodedata.layer := bodedata.layer + 1;

HideWindow(bodePtr);

ShowWindow(bodePtr);

SelectWindow(bodePtr);

ClipRect(bodeclipsize);

GetWData(bodePtr, WD);

bodePic := WD.windowPic;

newPic := OpenPicture(bodeclipsize);

DrawPicture(bodePic, bodeclipsize);

pensize(plotpen, plotpen);

penpat(black);

SetCursor(watch);

case bodedata.layer of

2 :

penpat(dkgray);

3 :

penpat(gray);

otherwise
penpat(ltgray);

end;

PlotMag;

SetCursor(arrow);

ClosePicture;

PenNormal;

SetWPic(bodePtr, newPic);

ShowWindow(bodePtr);

SelectWindow(bodePtr);

end
else
Basid Alert('This would be the first plot.', 1);

end

220

www.manaraa.com

11/28/87 19:27 CAD Bode Menu Page 10

else

Basic1Alert(There are no blocks in the system.', 1);

end;

otherwise

t

end;{ case}

end;

end.

221

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page

unit Nyquist;

interface
uses
XTTypeDefs, Extender! , CADGIobals, NumberCrunch, SANE, Extend2Stuff;

procedure DoNyquistMenu;

implementation
const

pi = 3.141592658;

plotpen = 2;

scrnwd = 493;

scrnht = 285;

topmar = 15;

Itmar = 38;

botmar = 15;

type
pointdata = record

donedata, wasabove, isabove : boolean;

phasept, freqpt, magpt : extended;

end;

va r

plotorigh, piotorigv : integer;

nyqPic, newPic : PicHandle;

clipsize : rect;

multfactor : extended;

phasemarg, gainmarg, magthreehalf, maghalf, magtwo, magthree : pointdata;

{ PointlnPlot function }

function PointlnPlot (pointl, point2 : point) : boolean;

va r

inplot : boolean;

pointl mag, point2mag : extended;

begin
inplot := true;

pointl mag := Sqrt(Num2Extended(point1.v) * Num2Extended(point1.v) + Num2Extended(point1.h) *

Num2Extended(point1 .h));

point2mag := Sqrt(Num2Extended(point2.v) * Num2Extended(point2.v) + Num2Extended(point2.h) *

Num2Extended(point2.h));

if (pointl mag > radius) and (point2mag > radius) then

inplot := false;

PointlnPlot := inplot;

end;

{ Pol2Rec procedure }

procedure Pol2Rec (mag, ang : extended;

var x : extended;

var y : extended);

begin

x := mag * cos(ang);

y := mag * sin(ang);

end;

{ -DoRadialGrid procedure-

222

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page 2

procedure DoRadialGrid;

const
initscale = 4;

va r

scale, counter, divint : integer;

divs : extended;

xpos, ypos : integer;

strout : str255;

begin

with nyquistdata do
begin

scale := maxmag div FindSep(maxmag, 0, initscale);

divs := multfactor * maxmag / scale; { adjusted radial value in pixels between separations }

divint := Num2lnteger(maxmag / scale); { integer value of interval }

end;

pensize(1, 1);

for counter := 1 to scale do
begin

penpat(black);

xpos := Num2lnteger((counter) * divs);

ypos := -3;

MoveTo(plotorigh + xpos, plotorigv + ypos);

strout := lnt2Str((counter * divint));

DrawString(strout);

penpat(dkgray);

FrameCircle(plotorigh, plotorigv, counter * divs);

end;

it nyquistdata. maxmag = 1 then

begin

penpat(dkgray);

for counter := 1 to 9 do
FrameCircle(plotorigh, plotorigv, counter * radius / 10);

end;

end;

DrawBasicPlot procedure }

procedure DrawBasicPlot;

begin

penpat(dkgray);

pensize(1, 1); { draw X and Y axis
}

DrawLine(-radius + plotorigh, plotorigv, radius + plotorigh, plotorigv);

DrawLine(plotorigh, plotorigv - radius, plotorigh, plotorigv + radius - 1);

DoRadialGrid;

penpat(black);

FrameCircle(plotorigh, plotorigv, multfactor);

MoveTo(plotorigh + Num2lnteger(multfactor) + 1, plotorigv - 3);

WriteDrawfV);
PenSize(plotpen, plotpen);

FrameCircle(plotorigh, plotorigv, radius);

draw outer plot circle
}

MoveTo(radius + 1 + plotorigh, 14 + plotorigv); { label phase positions
}

WriteDraw('O');

223

www.manaraa.com

12/02/87 21:22 CAD Nyqulst Menu Page 3

MoveTo(plotorigh - 14, plotorigv + radius + 11);

WriteDrawC-QO');

MoveTo(plotorigh - radius - 36, plotorigv + 4);

WriteDraw('-180');

MoveTo(plotorigh - 19, plotorigv - radius - 2);

WriteDrawC-270');

end;

{ GetPointData procedure----
}

procedure GetPointData (var pointofinterest : pointdata;

magvalue, magofinterest, phaseofinterest, freqofinterest : extended);

begin

with pointofinterest do { get mag data
}

begin

If not donedata then

begin

if magofinterest > magvalue then

isabove := true

else
isabove := false;

If wasabove and not isabove then

begin
phasept := phaseofinterest * 180 / pi;

freqpt := freqofinterest;

donedata := true;

end; { save data }

wasabove := isabove;

end;

end; { with }

end;

{ WriteFreq procedure }

procedure WriteFreq (freqout : extended);

var
multiplier : extended;

midmove, extrememove : integer;

begin

midmove := -StringWidth('O'); { set interval to move for each decimal place to left
}

extrememove := 2 * midmove;

If (freqout < 1e-3) or (freqout > 1e3) then
begin

Move(extrememove, 0);

Write Draw(freq out);

end
else
begin

multiplier := 10;

while freqout >= multiplier do
begin

Move(midmove, 0);

multiplier := multiplier * 10;

end;

WriteDraw(freqout : 3 : 3);

224

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page 4

end;

end;

[
DoDataBox procedure }

procedure DoDataBox;

const
lettersize = 9;

upmar = 0;

lowmar = 7;

gainmarmar = 10;

Itind = 7;

rtind 7;

lineht = 16;

linewd = 170;

magind = 15;

phaseind = 80;

freqind = 145;

extraind = 0;

va r

ulc, Ire : point;

boxwd, boxht, totlines, templines, marginlines, datalines, maxboxht, boxcenter : integer;

maxbox, databox, temprect : rect;

doupper, dolower : boolean;

begin

TextFace([bold]);

penpat(black);

doupper := false;

dolower := false;

Irc.h := scrnwd - 3;

Irc.v := scrnht - 3;

boxwd := Itind + rtind + linewd;

ulc.h := Irc.h - boxwd;

maxboxht := 8 * lineht + upmar + lowmar;

boxcenter := ulc.h + Num2lnteger(boxwd / 2);

SetRect(maxbox, ulc.h, Irc.v - maxboxht, Irc.h, Irc.v); { define rect to erase old data}

EraseRect(maxbox);

databox := maxbox;

marginlines := 0;

datalines := 1

;

If phasemarg.donedata then { margin points .upper data
}

begin

marginlines := marginlines + 1;

datalines := datalines + 1;

end;

if gainmarg.donedata then

marginlines := marginlines + 1

;

if magthreehalf.donedata then { data points lowerdata }

datalines := datalines + 1;

if maghalf.donedata then

datalines := datalines +1;
If magtwo.donedata then

datalines := datalines + 1;

if magthree.donedata then

225

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page

datalines := datalines + 1;

if marginlines > then { is upper data needed }

doupper := true;

If datalines > 1 then { is lower data needed
}

dolower := true;

If doupper or dolower then
begin { do the data box

}

totlines := 0;

If doupper then
totlines := marginlines;

if dolower then
totlines := totlines + datalines;

boxht := upmar + lowmar + totlines * lineht;

ulc.v := Irc.v - boxht; { set last box coordinate}

SetRect(databox, ulc.h, ulc.v, Irc.h, Irc.v);

Pensize(1, 1);

FrameRect(databox);

PenSize(2, 2);

temprect := databox;

lnsetRect(temprect, 2, 2);

FrameRect(temprect);

Pensize(1, 1);

TextSize(lettersize);

templines := 0;

If gainmarg.donedata then { do gain margin data}

begin

templines := templines + 1; { add a line
}

MoveTo(ulc.h + gainmarmar, ulc.v + upmar + lineht * templines);

DrawString('Gain Margin (dB) = ');

WriteDraw(gainmarg.magpt : 3 : 2);

end;

if phasemarg.donedata then { do phase margin data }

begin

templines := templines + 1; { add aline
}

MoveTo(ulc.h + gainmarmar, ulc.v + upmar + lineht * templines);

DrawStringfPhase Margin (deg) = ');

WriteDraw(180 - phasemarg.phasept : 3 : 2);

end;

If doupper then { draw a line separating upper and lower data box }

DrawLine(ulc.h + 2, ulc.v + upmar + templines * lineht + 2, Irc.h - 3, ulc.v + upmar + templines
*

lineht + 2);

if dolower then { do lower data box }

begin
templines := templines + 1 ; { add a line

}

MoveTo(ulc.h + magind, ulc.v + upmar + templines * lineht); { draw column titles
}

DrawString('Mag');

MoveTo(ulc.h + phaseind, ulc.v + upmar + templines * lineht);

DrawString ('Phase');

MoveTo(ulc.h + freqind, ulc.v + upmar + templines * lineht);

DrawString('Freq');

DrawLine(ulc.h + 2, ulc.v + upmar + templines * lineht + 2, Irc.h - 3, ulc.v + upmar + templines

lineht + 2);

If maghalf.donedata then { do mag half point
}

226

•

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page 6

begin
templines := templines + 1 ; { add a line

}

MoveTo(ulc.h + magind, ulc.v + upmar + templines * lineht);

DrawString('0.5');

MoveTo(ulc.h + phaseind, ulc.v + upmar + templines * lineht);

WriteDraw(maghalf.phasept : 3 : 1);

MoveTo(ulc.h + freqind + extraind, ulc.v + upmar + templines * lineht);

WriteFreq(maghalf.freqpt);

end; { mag half}

if phasemarg.donedata then { do mag one point
}

begin

templines := templines + 1 ; { add a line
}

MoveTo(ulc.h + magind, ulc.v + upmar + templines * lineht);

DrawString('I.O');

MoveTo(ulc.h + phaseind, ulc.v + upmar + templines * lineht);

WriteDraw(-phasemarg.phasept : 3 : 1);

MoveTo(ulc.h + freqind + extraind, ulc.v + upmar + templines * lineht);

WriteFreq(phasemarg.freqpt);

end; { mag one
}

if magthreehalf.donedata then { do mag threehalf point

}

begin

templines := templines + 1

;

MoveTo(ulc.h + magind, ulc.v + upmar + templines * lineht);

DrawString('1.5');

MoveTo(ulc.h + phaseind, ulc.v + upmar + templines * lineht);

WriteDraw(magthreehalf.phasept : 3 : 1);

MoveTo(ulc.h + freqind + extraind, ulc.v + upmar + templines * lineht);

WriteFreq(magthreehalf.freqpt);

end; { mag threehalf}

if magtwo.donedata then { do mag two point
}

begin

templines := templines + 1

;

MoveTo(ulc.h + magind, ulc.v + upmar + templines * lineht);

DrawString('2.0');

MoveTo(ulc.h + phaseind, ulc.v + upmar + templines * lineht);

WriteDraw(magtwo.phasept : 3 : 1);

MoveTo(ulc.h + freqind + extraind, ulc.v + upmar + templines * lineht);

WriteFreq(magtwo.freqpt);

end; { mag two}

if magthree.donedata then { do mag three point
}

begin

templines := templines + 1

;

MoveTo(ulc.h + magind, ulc.v + upmar + templines * lineht);

DrawString('3.0');

MoveTo(ulc.h + phaseind, ulc.v + upmar + templines * lineht);

WriteDraw(magthree.phasept : 3 : 1);

MoveTo(ulc.h + freqind + extraind, ulc.v + upmar + templines * lineht);

WriteFreq(magthree.freqpt);

end; { mag half}

end; { end lower data box}

end; { do the data box
}

TextSize(12);

Pensize(1, 1);

227

www.manaraa.com

12/02/87 21:22 CAD Nyqulst Menu

end;

{ DataToGraph procedure
}

procedure DataToGraph;

va r

counter : integer;

premag, adjustedmag, phase : extended;

freq, freqinterval : extended;

oldpoint, newpoint : point;

decades : extended;

{ freqinterval is the segment of the log scale over the freq range. }

begin
SetClip(plotclipH);

phasemarg.donedata := false; { set points of interest data

}

phasemarg.wasabove := false;

gainmarg.donedata := false;

gainmarg.wasabove := false;

magthreehalf.donedata := false;

magthreehalf.wasabove := false;

maghalf.donedata := false;

maghalf.wasabove := false;

magtwo.donedata := false;

magtwo.wasabove := false;

magthree.donedata := false;

magthree.wasabove := false;

decades := Log(nyquistdata.maxfreq) - Log(nyquistdata.minfreq);

If nyquistdata.linear then
freqinterval := (nyquistdata.maxfreq - nyquistdata.minfreq) / nyquistdata.pointstoplot

else
freqinterval := decades / nyquistdata.pointstoplot;

DP := GetNewDialog(calcpointid, nil, pointer(-l));

SetDData(DP, 1, 'Calculating data points. Please be patient!');

SetDData(DP, 2, lnt2Str(nyquistdata.pointstoplot));

for counter := 1 to nyquistdata.pointstoplot do
begin

If nyquistdata.linear then
freq := nyquistdata.minfreq + counter * freqinterval

else
freq := Ten2(Log(nyquistdata.minfreq) + counter * freqinterval);

premag := EvalGeq(sysblockH AA
, freq, phase);

with phasemarg do
{
get phase margin data

}

begin

if not donedata then

begin

If premag > 1 then

isabove := true

else
isabove := false;

If wasabove and not isabove then

begin
phasept := -phase * 180 / pi;

freqpt := freq;

donedata := true;

228

www.manaraa.com

12/02/87 21:22 CAD Nyqulst Menu Page 8

end; { save data }

wasabove := isabove;

end;

end;{ with phasemarg}

GetPointData(maghalf, 0.5, premag, phase, freq); {
points of interest}

GetPointData(magthreehalf, 1.5, premag, phase, freq);

GetPointData(magtwo, 2.0, premag, phase, freq);

GetPointData(magthree, 3.0, premag, phase, freq);

with gainmarg do { get gain margin data
}

begin
if not donedata then

begin
if phase > -pi then

isabove := true

else
isabove := faise;

if wasabove and not isabove then

begin
magpt := -20 * log(premag);

freqpt := -freq;

donedata := true;

end; { save data }

wasabove := isabove;

end;

end;{ with gainmarg
}

adjustedmag := multfactor * premag;

Pole2Rect(adjustedmag, phase, newpoint.h, newpoint.v);

If (counter > 1) and PointlnPlot(oldpoint, newpoint) then

Drawline(oldpoint.h + plotorigh, oldpoint.v + plotorigv, newpoint.h + plotorigh, newpoint.v +

plotorigv);

oldpoint := newpoint;

SetDData(DP, 2, lnt2Str(nyquistdata.pointstoplot - counter));

end;

DisposDialog(DP);

ClipRect(ciipsize);

DoDataBox;

ClipRect(clipsize);

end;

DrawNewPlot procedure
procedure DrawNewPlot;

begin

if (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin

SetCursor(watch);

ShowWindow(NyqPtr);

SelectWindow(NyqPtr);

TextFace([bold]);

ClipRect(clipsize);

NyqPic := OpenPicture(clipsize);

PenSize(plotpen, plotpen);

229

www.manaraa.com

t2/02/87 21:22 CAD Nyquist Menu Page 9

DrawBasicPlot;

DataToGraph;

PenNormal;

ClosePicture;

SetWPic(nyqPtr, nyqPic);

SetCursor(arrow);

end
else
Basic1Alert(There are no blocks in the system.', 1);

end;

{ GoodNyquistDataEntered function ----}

function GoodNyquistDataEntered : boolean;

va r

tempminfreq, tempmaxfreq : extended;

tempmaxmag, temppointstoplot : integer;

firsterr, valid, datagood : boolean;

begin

datagood := true;

firsterr := true;

GetChecklnt(DP, 7, tempmaxmag, valid); { check max mag
}

If (not valid) or (tempmaxmag <= 0) then

begin

datagood := false;

FrameDataError(firsterr, 7);

end;

valid := GetCheckReal(DP, 8, tempminfreq); { check min freq }

If (not valid) then
begin

datagood := false;

FrameDataError(firsterr, 8);

end;

valid := GetCheckReal(DP, 9, tempmaxfreq); { check max freq
}

if (not valid) or (tempminfreq >= tempmaxfreq) then

begin

datagood := false;

FrameDataError(firsterr, 9);

end;

GetChecklnt(DP, 12, temppointstoplot, valid); { check max mag
}

if (not valid) or (temppointstoplot <= 0) then
begin

datagood := false;

FrameDataError(firsterr, 12);

end;

GoodNyquistDataEntered := datagood;

If datagood then

with nyquistdata do
begin

minfreq := tempminfreq;

maxfreq := tempmaxfreq;

maxmag := tempmaxmag;
pointstoplot := temppointstoplot;

multfactor := radius / maxmag;

230

www.manaraa.com

12/02/87 21:22 CAD Nyqulst Menu Page 10

end;

end;

RedrawPlot procedure

procedure RedrawPlot;

begin

if not (sysgroupH AA.fwdbks + sysgroupHAA.backbks > 0) then

Basic1Alert(There are no blocks in the system.', 1)

else
begin

If not (nyquistdata.layer > 0) then

Basid AlertfA Nyquist plot has not yet beed drawn.', 1)

else
begin

ShowWindow(nyqPtr);
SelectWindow(nyqPtr);

end;

end;

end;

{ GetNyquistData procedure-

procedure GetNyquistData;

va r

doagain, templinear : boolean;

begin

templinear := nyquistdata.linear;

doagain := true;

SellText(DP, 7, 0, 255);

while doagain do
begin

FrameDltem(DP, 1);

ModalDialog(nil, itemNum);

case itemnum of

1 : { selected OK
}

begin

doagain := not GoodNyquistDataEntered;

if not doagain then
begin

nyquistdata.linear := templinear;

DisposDialog(DP);

DrawNewPlot;

nyquistdata.layer := 1

;

end;

end;

3 : { selected Cancel is item 3 }

begin

DisposDialog(DP);

doagain := false;

end;

13 : {log button
}

begin

if templinear then
begin

231

www.manaraa.com

12/02/87 21:22 CAD Nyqulst Menu Page 11

CheckDltem(DP, 13);

CheckDltem(DP, 14);

templinear := false;

end;

end;

14 : { linear button }

begin

if not templinear then
begin

CheckDltem(DP, 13);

CheckDltem(DP, 14);

templinear := true;

end;

end;

end; {case}

end;

end;

{ InitNyquistDialog procedure
}

procedure InitNyquistDialog;

begin

DP := GetNewDialog(nyquistid, nil, pointer(-l));

SellText(DP, 7, 0, 255);

with nyquistdata do
begin

SetDData(DP, 7, lnt2Str(maxmag));

SetDData(DP, 8, Real2Str(minfreq, true));

SetDData(DP, 9, Real2Str(maxfreq, true));

SetDData(DP, 12, lnt2Str(pointstoplot));

if linear then
CheckDltem(DP, 14) { set linear button

}

else
checkDltem(DP, 13);

end;

end;

{ InitPlotStuff procedure
procedure InitPlotStuff;

begin

radius := Num2lnteger((scrnht - topmar - botmar) / 2);

plotorigh := (radius + Itmar);

plotorigv := (radius + topmar);

plotclipH := NewRgn;
OpenRgn;

FrameCircle(plotorigh, plotorigv, radius);

CloseRgn(plotclipH);

{ set clipsize to screen size after the origin has been shifted }

SetRect(clipsize, 0, 0, 512, 323);

firstnyquistrun := false;

end;

{ DoNyquistMenu procedure
procedure DoNyquistMenu;

232

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page 12

begin

If firstnyquistrun then
InitPlotStuff;

itemnum := alert(nyqalertid, nil);

case itemnum of

1 : { selected Redraw
}

begin
RedrawPlot;

end;

2 : { selected New Plot }

begin

if not (sysgroupH AA.fwdbks + sysgroupH AA.backbks > 0) then

Basic1Alert(There are no blocks in the system.', 1)

else
begin

ClearAIIWindows;

InitNyquistDialog;

GetNyquistData;

end;

end;

3 : { select overlap plot
}

begin

If (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin

if nyquistdata.layer > then
begin

nyquistdata.layer := nyquistdata.layer + 1;

HideWindow(nyqPtr);

ShowWindow(nyqPtr);

SelectWindow(nyqPtr);

ClipRect(clipsize);

nyqPic := GetWPic(nyqPtr);

newPic := OpenPicture(clipsize);

DrawPicture(nyqPic, clipsize);

pensize(plotpen, plotpen);

penpat(black);

SetCursor(watch);

case nyquistdata.layer of

2 :

penpat(dkgray);

3 :

penpat(gray);

otherwise
penpat(ltgray);

end;

DataToGraph;

SetCursor(arrow);

ClosePicture;

PenNormal;

SetWPic(nyqPtr, newPic);

penpat(black);

ShowWindow(nyqPtr);

SelectWindow(nyqPtr);

233

www.manaraa.com

12/02/87 21:22 CAD Nyquist Menu Page

end
else
Basic1Alert(This would be the first plot.', 1);

end
else
Basid Alert(There are no blocks in the system.', 1);

end;

otherwise { selected Cancel}

end; {case}

end;

end.

234

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 1

unit RootLocus;

interface

uses
xttypedefs, extender"!, CadGlobals, NumberCrunch, simpgroup, SANE, Extend2Stuff;

procedure DoRLocusMenu;

Implementation
const
botmar = 20;

topmar = 58;

Itmar = 15;

rtmar = 55;

scrnht = 285;

scrnwd = 493;

va r

rlocusPic, newPic : PicHandle;

clipsize, plotrect : rect;

plotwd, plotht, pointno : integer;

xstep, ystep, gainval : extended;

{ X2Wd procedure
}

function X2Wd (xin : extended) : integer;

va r

tempxout : extended;

xout : integer;

begin

with rlocusdata do
begin

if (xmin <= xin) and (xin <= xmax) then
begin

tempxout := Itmar + plotwd * (xin - xmin) / (xmax - xmin);

xout := Num2lnteger(tempxout)

end { if}

else

xout := 512; { put it outside of plot
}

end; { with
}

X2Wd := xout;

end;

Y2Ht procedure
}

function Y2Ht (yin : extended) : integer;

va r

tempyout : extended;

yout : integer;

begin

with rlocusdata do
begin

if (ymin <= yin) and (yin <= ymax) then
begin

tempyout := topmar + plotht * (ymax - yin) / (ymax - ymin);

yout := Num2lnteger(tempyout)

end { if}

else

235

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 2

yout := 512; { put it outside of plot
}

end; { with
}

Y2Ht := yout;

end;

{
-CrossPoint procedure-------- -

}

procedure CrossPoint (xval, yval : extended);

va r

ht, wd : integer;

begin

wd := X2Wd(xval);

ht := Y2Ht(yval);

if (wd <> 512) and (ht <> 512) then
begin
DrawLine(wd - 1, ht, wd + 1, ht);

DrawLine(wd, ht - 1, wd, ht + 1);

end;

end;

{ WriteNum procedure--
procedure WriteNum (numout : extended);

va r

multiplier : extended;

midmove, places, counter : integer;

begin
if (abs(numout) < 1e-7) then
WriteDraw(0.0 : 3 : 1)

else If (abs(numout) < 1e-3) or (abs(numout) > 1e3) then
begin

Write Draw(numout);

end
else

begin

multiplier := 0.1;

places := 3;

while abs(numout) >= multiplier do
begin
multiplier := multiplier * 10;

places := places - 1

;

end;

if places <= then

places := 1

;

WriteDraw(numout : 3 : places);

end;

end;

{ DrawHorizLine procedure
procedure DrawHorizLine (yval : extended);

v a r

ht : integer;

begin

ht := Y2Ht(yval);

DrawLine(ltmar, ht, Itmar + plotwd - 2, ht);

236

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 3

end;

{ DrawVertLine procedure
}

procedure DrawVertLine (xval : extended);

va r

wd : integer;

begin

wd := X2Wd(xval);

DrawLine(wd, topmar, wd, topmar + plotht - 2);

end;

{ InitRLocus procedure
}

procedure InitRLocus;

begin

DP := GetNewDialog(rlocusid, nil, pointer(-l));

with rlocusdata do
begin

SetDData(DP, 10, Real2Str(mingain, true));

SetDData(DP, 11, Real2Str(maxgain, true));

SetDData(DP, 12, lnt2Str(points));

SetDData(DP, 18, Real2Str(xmin, true));

SetDData(DP, 19, Real2Str(xmax, true));

SetDData(DP, 20, Real2Str(ymin, true));

SetDData(DP, 21, Real2Str(ymax, true));

If linear then { set point interval radio buttons
}

CheckDltem(DP, 6)

else
CheckDltem(DP, 7);

If (simptype) and (sysgroupH AA.backbks <> 0) then { set loop path radio button
}

CheckDltem(DP, 8)

else
CheckDltem(DP, 9);

if (simptype) and (sysgroupH AA.backbks = 0) then { set loop path radio button
}

begin
Basic1Alert(There are no feedback blocks in the system so the default loop path has been changed

to "Closed Loop" for this plot', 1);

simptype := false;

end;

end; { with rlocusdata}

SellText(DP, 10, 0, 255); { select mingain data box }

end;

[GoodRLocusDataEntered function }

function GoodRLocusDataEntered : boolean;

va r

Itempmingain, tempmaxgain, tempxmin, tempxmax, tempymin, tempymax : extended;

temppoints : integer;

firsterr, valid, datagood, xgood, ygood : boolean;

begin

xgood := true;

ygood := true;

datagood := true;

firsterr := true;

237

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page

valid := GetCheckReal(DP, 10, tempmingain); { check min gain }

If not valid or (tempmingain < 0) or (tempmingain > 1e7) then

begin

datagood := false;

FrameDataError(firsterr, 10);

end;

valid := GetCheckReal(DP, 11, tempmaxgain); { check max gain
}

If (not valid) or (tempmaxgain > 1e7) or (tempmaxgain <= 0) or (firsterr and (tempmaxgain <=

tempmingain)) then

begin

datagood := false;

FrameDataError(firsterr, 11);

end;

GetChecklnt(DP, 12, temppoints, valid);

If not valid or (temppoints < 1) then
begin

datagood := false;

FrameDataError(firsterr, 12);

end;

valid := GetCheckReal(DP, 18, tempxmin); { check xmin
}

if not valid or (tempxmin < -1e7) or (tempxmin > 1e7) then
begin

datagood := false;

xgood := false;

FrameDataError(firsterr, 18);

end;

valid := GetCheckReal(DP, 19, tempxmax); { check xmax
}

if not valid or (tempxmax < -1e7) or (tempxmax > 1e7) or (xgood and (tempxmax <= tempxmin))

then
begin

datagood := false;

FrameDataError(firsterr, 19);

end;

valid := GetCheckReal(DP, 20, tempymin); { check ymin
}

if not valid or (tempymin < -1e7) or (tempymin > 1e7) then
begin

datagood := false;

ygood := false;

FrameDataError(firsterr, 20);

end;

valid := GetCheckReal(DP, 21, tempymax); { check ymax
}

If not valid or (tempymax < -1e7) or (tempymax > 1e7) or (ygood and (tempymax <= tempymin))

then
begin

datagood := false;

FrameDataError(firsterr, 21);

end;

GoodRlocusDataEntered := datagood;

if datagood then

with rlocusdata do
begin { save good data

}

mingain := tempmingain;

maxgain := tempmaxgain;

238

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 5

points := temppoints;

xmin := tempxmin;

xmax := tempxmax;

ymin := tempymin; •

ymax := tempymax;

doit := true;

end;

end;

{ GetRLocusData procedure }

procedure GetRLocusData;

va r

doagain, templinear, tempsimptype : boolean;

begin

ClearAIIWindows;

InitRLocus;

with rlocusdata do
begin { set temp buttons

}

templinear := linear;

tempsimptype := simptype;

doit := false;

end; { with rlocus data
}

doagain := true; { set flag
}

while doagain do
begin

FrameDltem(DP, 1);

ModalDialog(nil, itemnum);

if (itemnum = 6) and (not templinear) then { linear button }

begin

CheckDltem(DP, 6);

CheckDltem(DP, 7);

templinear := true;

end; { end linear button
}

if (itemnum = 7) and templinear then { log button
}

begin

CheckDltem(DP, 6);

CheckDltem(DP, 7);

templinear := false;

end; { end log button}

If (itemnum = 8) and not tempsimptype and (sysgroupH AA .backbks <> 0) then { Geq button}

begin

CheckDltem(DP, 8);

CheckDltem(DP, 9);

tempsimptype := true;

end; { end Geq button }

If (itemnum = 9) and tempsimptype then { close loop button
}

begin

CheckDltem(DP, 8);

CheckDltem(DP, 9);

tempsimptype := false;

end; { end closed loop button
}

If itemnum = 2 then { cancel }

doagain := false;

239

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page t

If itemnum = 1 then { selected OK
}

begin
doagain := not GoodRLocusDataEntered;

If not doagain then

begin { save button data
}

rlocusdata. linear := templinear;

rlocusdata.simptype := tempsimptype;

end;

end; { ok }

end; { while }

DisposDialog(DP);

end;

{--- GetStep procedure
procedure GetStep (var xstep : extended;

var ystep : extended);

va r

xspread, yspread : extended;

newmin, newmax : longint;

begin

with rlocusdata do
begin
xspread := xmax - xmin;

yspread := ymax - ymin;

if (xmax - xmin >= 10) then
{
get x plot intervals}

begin
SetRound(downward); { big spread}

newmin := Num2Longint(xmin);

SetRound(upward);

newmax := Num2l_ongint(xmax);

SetRound(tonearest);

xmin := newmin;

xmax := newmax;
xstep := FindSep(newmax, newmin, 5);

end
else
xstep := FindRealSep(xspread, 7);

if (ymax - ymin >= 10) then { get y plot intervals}

begin

SetRound(downward); { big spread}

newmin := Num2Longint(ymin);

SetRound(upward);

newmax := Num2Longint(ymax);

SetRound(tonearest);

ymin := newmin;

ymax := newmax;

ystep := FindSep(newmax, newmin, 8);

end
else

ystep := FindRealSep(yspread, 8);

end; { with rlocus data }

end;

240

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 7

{
DrawBasicPlot procedure }

procedure DrawBasicPlot;

const
vertlabelsep = 15;

horzlabelsep = 5;

va r

xstep, ystep, linevalue : extended;

begin

with rlocusdata do
begin

GetStep(xstep, ystep);

PenSize(2, 2);

FrameRect(plotrect);

PenSize(1, 1);

MoveTo(ltmar - 10, topmar + plotht + vertlabelsep - 2); { x labels
}

WriteNum(xmin);

MoveTo(ltmar + plotwd - 10, topmar + plotht + vertlabelsep - 2);

WriteNum(xmax);

linevalue := xmin + xstep;

while linevalue < (xmax - xstep / 2) do
begin
DrawVertLine(linevalue);

Move(-10, vertlabelsep);

WriteNum(linevalue);

linevalue := linevalue + xstep;

end; { while }

MoveTo(ltmar + plotwd + horzlabelsep - 2, topmar + plotht);
{ y labels

}

WriteNum(ymin);

MoveTo(ltmar + plotwd + horzlabelsep - 2, topmar);

WriteNum(ymax);

linevalue := ymin + ystep;

while linevalue < (ymax - ystep / 2) do
begin

DrawHorizLine(linevalue);

Move(horzlabelsep, 0);

WriteNum(linevalue);

linevalue := linevalue + ystep;

end; { while }

end; { with rlocusdata}

PenSize(2, 2);

DrawHorizLine(O);

DrawVertLine(O);

PenSize(1, 1);

end;

GetGain procedure
}

function NextGain : extended;

va r

gainout, stepsize, logmin : extended;

begin

with rlocusdata do
begin

If linear then

241

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 8

begin { linear
}

stepsize := (maxgain - mingain) / points;

gainout := mingain + pointno * stepsize;

end
else { logarithmic

}

begin

If (mingain < 1e-5) and (maxgain > 1e-1) then

logmin := -5

else
logmin := log(mingain);

stepsize := (log(maxgain) - logmin) / points;

gainout := Ten2(logmin + pointno * stepsize);

end;

end; { with
}

NextGain := gainout;

end;

{ GetGeq procedure
}

function GetGeq (gain : extended;

var polyc : polycoef) : boolean;

va r

unusedblock, G, H : block;

valid, addneg : boolean;

simpno : integer;

leftpoly, rightpoly, charpoly, tempeq : polycoef;

begin
leftpoly := unityblock.num;

rightpoly := unityblock.num;

charpoly := unityblock.num;

tempeq := unityblock.num;

If rlocusdata.simptype then

simpno := 1

else
simpno := 4;

valid := GeqGroup(sysgroupH AA
, simpno, unusedblock, G, H);

if sysgroupH AA.posFback then { set feedback type}

addneg := false

else
addneg := true;

if valid then
begin

If not PolyMult(G.den, H.den, leftpoly) then
{
get firstleft poly}

valid := false;

if valid and not PolyMult(G.num, H.num, rightpoly) then

valid := false;

if simpno = 1 then { include gain factor if Geq
}

rightpoly. gain := rightpoly.gain * gain;

if valid then
charpoly := PolySum(leftpoly, addneg, rightpoly);

If simpno = 4 then

begin { closed loop
}

tempeq := charpoly;

if valid and not PolyMult(G.num, H.den, rightpoly) then

242

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 9

valid := false;

rightpoly.gain := rightpoly.gain * gain;

charpoly := PolySum(tempeq, true, rightpoly);

end; { simptype =4 }

end; { if valid }

polyc := charpoly;

GetGeq := valid;

end;

{ PlotPoints procedure

procedure PlotPoints (polyfin : polyfact);

va r

counter : integer;

begin

with polyfin do
begin

for counter := 1 to degree do
CrossPoint(-fact[counter].realpart, fact[counter].imagpart);

end; { with
}

end;

{ DataToGraph procedure

procedure DataToGraph;

va r

gain : extended;

polycin : polycoef;

continue : boolean;

polyf : polyfact;

begin

SetCursor(watch);

ClipRect(plotrect);

pointno := 0;

DP := GetNewDialog(calcpointid, nil, pointer(-l));

SetDData(DP, 1, 'Calculating data points. Please be patient!');

SetDData(DP, 2, lnt2Str(rlocusdata. points));

while pointno <= rlocusdata.points do
begin

gain := NextGain;

continue := GetGeq(gain, polycin);

if continue then
begin

RootFinder(polycin, polyf, false);

PlotPoints(polyf);

end; { if continue}

SetDData(DP, 2, lnt2Str(rlocusdata.points - pointno));

pointno := pointno + 1

;

end; { while }

DisposDialog(DP);

ClipRect(clipsize);

end;

RedrawPlot procedure-

procedure RedrawPlot;

243

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 10

begin

It not (sysgroupHAA.fwdbks + sysgroupH A\backbks > 0) then

BasidAlertfThere are no blocks in the system.', 1)

else
begin

if not (rlocusdata. layer > 0) then
Basic1Alert('A Root Locus has not yet beed drawn.', 1)

else
begin
ShowWindow(rootPtr);

SelectWindow(rootPtr);

end;

end;

end;

{ DoRLocusMenu procedure

procedure DoRLocusMenu;
begin

TextSize(9);

plotht := scrnht - topmar - botmar;

plotwd := scrnwd - Itmar - rtmar;

SetRect(plotrect, Itmar, topmar, Itmar + plotwd, topmar + plotht);

SetRect(clipsize, 0, 0, 512, 323);

itemnum := alert(rlocusalertid, nil);

case itemnum of

1 : { select Redraw }

begin

RedrawPlot;

end;

2 : { select New Plot}

begin

if (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin
GetRLocusData;

if rlocusdata.doit then
If (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin

ShowWindow(rootPtr);

SelectWindow(rootPtr);

TextFace([bold]);

ClipRect(clipsize);

rlocusPic := OpenPicture(clipsize);

DrawBasicPlot;

DataToGraph;

ClosePicture;

SetWPic(rootPtr, rlocusPic);

SetCursor(arrow);

rlocusdata.layer := 1;

end;

end
else
Basid AlertfThere are no blocks in the system.', 1);

end;

244

www.manaraa.com

12/02/87 21:29 CAD RLocus Menu Page 11

3 : { select Overlap
}

begin

if (sysgroupHAA.fwdbks + sysgroupH A\backbks) > then

begin

if rlocusdata. layer > then

begin

rlocusdata.layer := rlocusdata. layer + 1

;

HideWindow(rootPtr);

ShowWindow(rootPtr);

SelectWindow(rootPtr);

ClipRect(clipsize);

rlocusPic := GetWPic(rootPtr);

newPic := OpenPicture(clipsize);

DrawPicture(rlocusPic, clipsize);

pensize(1, 1);

penpat(black);

SetCursor(watch);

case rlocusdata.layer of

2 :

penpat(dkgray);

3 :

penpat(gray);

otherwise
penpat(ltgray);

end;

DataToGraph;

SetCursor(arrow);

ClosePicture;

PenNormal;

SetWPic(rootPtr, newPic);

penpat(black);

ShowWindow(rootPtr);

SelectWindow(rootPtr);

end
else
Basic1Alert(This would be the first plot.', 1);

end
else

Basid Alert(There are no blocks in the system.', 1);

end;

otherwise { select Cancel
}

end; { case
}

TextSize(12);

end;

>nd. { unit }

245

www.manaraa.com

12/02/87 21:44 CAD RFInd Menu Page 1

unit RFinder;

interface
uses
XTTypeDefs, Extender"!, CADGIobals, NumberCrunch, sane, DoBlockMenu;

procedure DoRFinderMenu;

va r

polycin : polycoef;

polyfout : polyfact;

polyorder : integer;

doit, doagain, goodint : boolean;

implementation
procedure DoRFinderMenu;

begin

editnewblock := true;

saveit := true;

doit := true;

doagain := true;

DP := GetNewDialog(rootid, nil, pointer(-l));

SellText(DP, 4, 0, 255);

while doagain do
begin
FrameDltem(DP, 1);

ModalDialog(nil, itemnum);

If itemNum = 2 then { cancel was selected }

begin

doit := false;

doagain := false;

end { if}

else {ok was selected}

begin
GetChecklnt(DP, 4, polyorder, goodint);

if (goodint) and (0 < polyorder) and (polyorder < 11) then{ the input no. was good
}

begin

doit := true;

doagain := false;

polycin.degree := polyorder;

end
{ good input }

else { the number was not good}

begin

FrameDitem(DP, 4);

SellText(DP, 4, 0, 255);

doagain := true;

end; { else not good number}

end;{else OK selected}

end; {while}

DisposDialog(DP);

if doit then
begin
LoadPolyCoef('RootFinder', polycin); { load the poly

}

if saveit then
begin

SetCursor(watch);

RootFinder(polycin, polyfout, true); { solve the roots
}

246

www.manaraa.com

12/02/87 21:44 CAD RFInd Menu Page 2

SetCursor(arrow);

DP := GetNewDialog(polyfactid, nil, pointer(-l));

FrameDltem(DP, 1);

OldFactDataOut(polyfout)

;

ModalDialog(nil, itemnum);

DisposDialog(DP);

end;

end;

end;

end.

247

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 1

unit Time;

interface
uses
XTTypeDefs, Extended, CADGIobals, SANE, NumberCrunch, Extend2Stuff;

procedure DoTimeMenu;
Implementation
const
timestepnumber = 1000;

botmar = 35;

topmar = 58;

Itmar = 50;

rtmar = 20;

scrnht = 285;

scrnwd = 493;

timealertid = 29493;

stepid = 13173; { input type dialog box id's }

rampid = 8298;

impulseid = 378;

sineid = 19775;

type
matrix = array[1..20, 1..20] of extended;

vector = array[1..20] of extended;

va r

effgain : extended; { block gain with den normalized }

tempblock : block;

alertresponse, plotwd, plotht, oldx, oldy, poles, zeros : integer;

Psi, Phi, A, Atemp : matrix;

C, Xold, Xnew, Gamma : vector;

WD : WData;

timeclipsize, plotrect : rect;

LRC, ULC : point;

plotmaxmag, plotminmag, plotmagstep : extended;

plotmaxtime, plottimestep, timeinterval, delt : extended; { timeinterval = time }

{ between plotted points

}

{ delt is time between
}

timePic, newPic : PicHandle; { state calculations }

{ Mag2Ht function --}

{ input a magnitude of the plot and an integer value of the height in
}

{ pixels is returned.
}

function Mag2Ht (mag : extended) : integer;

v a r

tempht : integer;

begin

Mag2Ht := topmar + Num2lnteger((plotmaxmag - mag) * plotht / (plotmaxmag - plotminmag));

end;

{ Time2Wd function

{ input a magnitude of the plot and an integer value of the height in
}

{
pixels is returned.

}

function Time2Wd (time : extended) : integer;

v a r

tempwd : integer;

begin

248

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 2

Time2Wd := Itmar + Num2lnteger(time * plotwd / plotmaxtime);

end;

{ Matrix Mult function }

function MatrixMult (matrixl, matrix2 : matrix;

order : integer) : matrix;

va r

rowcount, colcount, sumcount : integer;

tempmatrix : matrix;

begin

for rowcount := 1 to order do
for colcount := 1 to order do
tempmatrix[rowcount, colcount] := 0;

for rowcount := 1 to order do
for colcount := 1 to order do
for sumcount := 1 to order do
tempmatrix[rowcount, colcount] := tempmatrix[rowcount, colcount] + matrixl [rowcount,

sumcount] * matrix2[sumcount, colcount];

MatrixMult := tempmatrix;

end;

{ ScalarMatrixMult function }

function ScalarMatrixMult (matrixin : matrix;

scalar : extended;

order : integer) : matrix;

va r

tempmatrix : matrix;

rowcount, colcount : integer;

begin

for rowcount := 1 to order do
for colcount := 1 to order do
tempmatrix[rowcount, colcount] := matrixin[rowcount, colcount] * scalar;

ScalarMatrixMult := tempmatrix;

end;

{ MatrixVectorMult function }

function MatrixVectorMult (matrixin : matrix;

vectorin : vector;

order : integer) : vector;

va r

tempvector : vector;

rowcount, colcount : integer;

tempsum : extended;

begin

for rowcount := 1 to order do
begin

tempsum := 0;

for colcount := 1 to order do
tempsum := tempsum + Matrixin[rowcount, colcount] * vectorin[colcount];

tempvector[rowcount] := tempsum;
end;

MatrixVectorMult := tempvector;

end;

249

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 3

{ G ood Step DataEnte red function— -}

function GoodStepDataEntered : boolean;

va r

tempinamp, tempplotamp, temptime : extended;

firsterr, valid, datagood : boolean;

begin

datagood := true;

firsterr := true;

valid := GetCheckReal(DP, 6, tempinamp); { check input amp}

if not valid or (tempinamp <= 0) or (tempinamp > 1e7) then
begin

datagood := false;

FrameDataError(firsterr, 6);

end;

valid := GetCheckReal(DP, 7, tempplotamp); { check plot amp
}

{ make sure that if the input amp was good }

if not valid or (tempplotamp > 1e7) or (tempplotamp <= 0) then
begin
datagood := false;

FrameDataError(firsterr, 7);

end;

valid := GetCheckReal(DP, 8, temptime); { check max time}

If not valid or (temptime <= 0) or (temptime > 100) then
begin

datagood := false;

FrameDataError(firsterr, 8);

end;

GoodStepDataEntered := datagood;

if datagood then

begin

with timedata do
begin

amp := tempinamp;

maxy := tempplotamp;

maxtime := temptime;

end;

end;

end;

{ GetStepData procedure }

procedure GetStepData;

va r

tempbutton, doagain : boolean;

itemnum : integer;

begin

doagain := true;

DP := GetNewDialog(stepid, nil, pointer(-l));

SetDData(DP, 6, Real2Str(timedata.amp, true));

SetDData(DP, 7, Real2Str(timedata.maxy, true));

SetDData(DP, 8, Real2Str(timedata. maxtime, true));

SellText(DP, 6, 0, 255);

if timedata.zerobottom then

250

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 4

CheckDltem(DP, 10)

else
CheckDltem(DP, 11);

tempbutton := timedata.zerobottom;

while doagain do
begin
FrameDltem(DP, 1);

ModalDialog(nil, itemNum);

If itemNum = 2 then { selected cancel
}

begin
timedata.doit := false;

doagain := false;

end
else if itemNum = 10 then { checked bottom button }

begin

if not tempbutton then

begin
CheckDltem(DP, 10);

CheckDltem(DP, 11);

end;

tempbutton := true;

end
else If itemNum = 11 then { checked center button

}

begin

If tempbutton then

begin
CheckDltem(DP, 10);

CheckDltem(DP, 11);

end;

tempbutton := false;

end
else { selected OK }

begin

doagain := not GoodStepDataEntered;

if not doagain then

timedata.zerobottom := tempbutton;

end;

end;

DisposDialog(DP);

end;

{ GoodRampDataEntered function--

function GoodRampDataEntered : boolean;

va r

tempslope, tempdcoff, tempplotamp, temptime : extended;

firsterr, valid, datagood : boolean;

begin

datagood := true;

firsterr := true;

valid := GetCheckReal(DP, 7, tempslope); { check slope
}

If not valid or (abs(tempslope) > 1e7) then

begin

datagood := false;

251

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 5

FrameDataError(firsterr, 7);

end;

valid := GetCheckReal(DP, 8, tempdcoff); { check dc offset
}

If not valid or (abs(tempdcoff) > 1e7) then

begin

datagood := false;

FrameDataError(firsterr, 8);

end;

valid := GetCheckReal(DP, 9, tempplotamp); { check plot amp
}

if not valid or (tempplotamp <= 0) or (tempplotamp > 1e7) then
begin

datagood := false;

FrameDataError(firsterr, 9);

end;

valid := GetCheckReal(DP, 10, temptime); { check max time}

if not valid or (temptime <= 0) or (temptime > 100) then
begin
datagood := false;

FrameDataError(firsterr, 10);

end;

GoodRampDataEntered := datagood;

if datagood then

begin

with timedata do
begin

slope := tempslope;

dcoff := tempdcoff;

maxy := tempplotamp;

maxtime := temptime;

end;

end;

end;

{ GetRampData procedure }

procedure GetRampData;

va r

tempbutton, doagain : boolean;

itemnum : integer;

begin

doagain := true;

DP := GetNewDialog(rampid, nil, pointer(-l));

SetDData(DP, 7, Real2Str(timedata. slope, true));

SetDData(DP, 8, Real2Str(timedata.dcoff, true));

SetDData(DP, 9, Real2Str(timedata.maxy, true));

SetDData(DP, 10, Real2Str(timedata.maxtime, true));

SellText(DP, 7, 0, 255);

if timedata.zerobottom then
CheckDltem(DP, 12)

else

CheckDltem(DP, 13);

tempbutton := timedata. zerobottom;

while doagain do
begin

252

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 6

FrameDltem(DP, 1);

ModalDialog(nll, itemNum);

If itemNum = 2 then { selected cancel
}

begin
timedata.doit := false;

doagain := false;

end
else If itemNum = 12 then { checked bottom button

}

begin
if not tempbutton then

begin
CheckDltem(DP, 12);

CheckDltem(DP, 13);

end;

tempbutton := true;

end
else if itemNum = 13 then { checked center button

}

begin

If tempbutton then
begin

CheckDltem(DP, 12);

CheckDltem(DP, 13);

end;

tempbutton := false;

end
else { selected OK }

begin

doagain := not GoodRampDataEntered;

if not doagain then

timedata.zerobottom := tempbutton;

end;

end;

DisposDialog(DP);

end;

{ GoodlmpulseDataEntered function

function GoodlmpulseDataEntered : boolean;

va r

tempinamp, tempplotamp, temptime : extended;

firsterr, valid, datagood : boolean;

begin

datagood := true;

firsterr := true;

valid := GetCheckReal(DP, 6, tempinamp); { check input amp}

if not valid or (tempinamp <= 0) or (tempinamp > 1e7) then
begin

datagood := false;

FrameDataError(firsterr, 6);

end;

valid := GetCheckReal(DP, 7, tempplotamp); { check plot amp
}

if not valid or (tempplotamp <= 0) or (tempplotamp > 1e7) then
begin

datagood := false;

253

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page

FrameDataError(firsterr, 7);

end;

valid := GetCheckReal(DP, 8, temptime); { check max time}

if not valid or (temptime <= 0) or (temptime > 100) then

begin

datagood := false;

FrameDataError(firsterr, 8);

end;

GoodlmpulseDataEntered := datagood;

if datagood then

begin
with timedata do
begin

impamp := tempinamp;

maxy := tempplotamp;

maxtime := temptime;

end;

end;

end;

{---- - GetlmpulseData procedure
procedure GetlmpulseData;

va r

temptime, displayedtime : extended;

tempbutton, tempautoimpamp, doagain, valid, goodtimedisplayed : boolean;

itemnum : integer;

begin

doagain := true;

DP := GetNewDialog(lmpulseid, nil, pointer(-l));

SetDData(DP, 6, Real2Str(timedata.impamp, true));

if timedata.autoimpamp then { if auto imp amp set}

SetDData(DP, 6, Real2Str(timestepnumber / timedata.maxtime, true));

SetDData(DP, 7, Real2Str(timedata.maxy, true));

SetDData(DP, 8, Real2Str(timedata.maxtime, true));

SellText(DP, 6, 0, 255);

if timedata.zerobottom then { set 'zero at bottom' radio button
}

CheckDltem(DP, 10)

else { set 'zero at center' radio button }

CheckDltem(DP, 11);

If timedata.autoimpamp then { set auto unit impulse amp check box }

CheckDltem(DP, 12);

tempautoimpamp := timedata.autoimpamp; { set temp variables
}

tempbutton := timedata.zerobottom;

temptime := timedata.maxtime;

while doagain do
begin

FrameDltem(DP, 1);

ModalDialog(nil, itemNum);

If itemNum = 2 then { selected cancel
}

begin

timedata.doit := false;

doagain := false;

end

254

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 8

else If itemNum = 12 then
begin
CheckDltem(DP, 12);

tempautoimpamp := not tempautoimpamp;

goodtimedisplayed := GetCheckReal(DP, 8, displayedtime);

if tempautoimpamp and goodtimedisplayed then

SetDData(DP, 6, Real2Str(timestepnumber / displayedtime, true));

end
else If (itemnum = 8) then { if time box 'touched'

}

begin

If (tempautoimpamp) then

begin

valid := GetCheckReal(DP, 8, temptime); { check time }

if valid and (temptime > 0) and (temptime <= 100) then

begin
SetDData(DP, 6, Real2Str(timestepnumber / temptime, true));

end;

end;

doagain := true;

end
else If (itemNum = 10) and not tempbutton then { checked bottom button

}

begin

CheckDltem(DP, 10);

CheckDltem(DP, 11);

tempbutton := true;

end
else If (itemNum = 11) and tempbutton then { checked center button

}

begin
CheckDltem(DP, 10);

CheckDI1em(DP, 11);

tempbutton := false;

end
else { selected OK }

begin

doagain := not GoodlmpulseDataEntered;

if not doagain then
begin

timedata.autoimpamp := tempautoimpamp;

timedata.zerobottom := tempbutton;

end;

end;

end;

DisposDialog(DP);

end;

{ GoodSineDataEntered function }

function GoodSineDataEntered : boolean;

va r

tempinamp, tempfreq, tempplotamp, temptime : extended;

firsterr, valid, datagood : boolean;

begin

datagood := true;

firsterr := true;

255

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 9 12

valid := GetCheckReal(DP, 7, tempinamp); { check input amp}

If not valid or (tempinamp <= 0) or (tempinamp > 1e7) then

begin
datagood := false;

FrameDataError(firsterr, 7);

end;

valid := GetCheckReal(DP, 8, tempfreq); { check freq
}

if not valid or (tempfreq <= 0) or (tempfreq > 1e3) then
begin
datagood := false;

FrameDataError(firsterr, 8);

end;

valid := GetCheckReal(DP, 9, tempplotamp); { check plot amp }

if not valid or (tempplotamp <= 0) or (tempplotamp > 1e7) then
begin

datagood := false;

FrameDataError(firsterr, 9);

end;

valid := GetCheckReal(DP, 10, temptime); { check max time}

if not valid or (temptime <= 0) or (temptime > 100) then

begin
datagood := false;

FrameDataError(firsterr, 10);

end;

GoodSineDataEntered := datagood;

If datagood then

begin

with timedata do
begin

amp := tempinamp;

freq := tempfreq;

maxy := tempplotamp;

maxtime := temptime;

end;

end;

end;

{ GetSineData procedure
}

procedure GetSineData;

va r

doagain : boolean;

itemnum : integer;

begin
doagain := true;

DP := GetNewDialog(sineid, nil, pointer(-l));

SetDData(DP, 7, Real2Str(timedata.amp, true));

SetDData(DP, 8, Real2Str(timedata.freq, true));

SetDData(DP, 9, Real2Str(timedata.maxy, true));

SetDData(DP, 10, Real2Str(timedata. maxtime, true));

SellText(DP, 7, 0, 255);

while doagain do
begin

FrameDltem(DP, 1);

256

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 10

ModalDialog(nll, itemNum);

If itemNum = 2 then { selected cancel
}

begin

timedata.doit := false;

doagain := false;

end
else { selected OK }

begin
doagain := not GoodSineDataEntered;

end;

end;

DisposDialog(DP);

end;

{ Calculate Mat rixAndVector procedure }

procedure CalcuiateMatrixAnd Vector,

va r

i, j, m, n : integer;

factorial, T1, rowsum, maxrowsum, oldmaxrowsum : extended;

finished : boolean;

begin

tempblock := sysblockHAA ; { A MATRIX }

poly norm(tempblock. den);

effgain := tempblock.num.gain / tempblock.den.gain;

with tempblock do
begin
poles := den.degree;

zeros := num.degree;

for i := 1 to poles - 1 do
for j := 1 to poles do

If j = i + 1 then
A[i, j] := 1 { fill with 0's and 1's }

else

A[i, j] := 0;

for j := 1 to poles do
A[poles, j] := -den.coef[j]; { load last row with - den coefs}

{ C MATRIX }

for i := 1 to poles do
begin

if i > zeros + 1 then
C[i] := 0.0

else

C[i] := num.coef[i] * effgain;

If zeros = poles then

C[i] := C[i] + effgain * num.coef[zeros + 1] * A[poles, i];

end; { for i = 1 to poles
}

end;{ with tempblock
}

{ Psi and Atemp
}

Atemp := A;

Psi := A;

Psi := ScalarMatrixMult(Psi, delt / 2, poles);

for i := 1 to poles do
Psi[i, i] := Psi[i, i] + 1.0;

257

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 11

factorial := 2;

T1 := delt;

oldmaxrowsum := 0.0;

repeat
factorial := factorial * (poles + 1);

T1 := T1 * delt;

Phi := MatrixMult(A, Atemp, poles);

Atemp := Phi;

Phi := ScalarMatrixMult(Phi, (T1 / factorial), poles);

for j := 1 to poles do
for m := 1 to poles do

Psi[j, m] := Psi[j, m] + phi[j, m];

maxrowsum := 0.0;

for j := 1 to poles do
begin

rowsum := 0.0;

for m := 1 to poles do
rowsum := rowsum + Psi[j, m];

if rowsum > maxrowsum then

maxrowsum := rowsum;

end;

If poles > then
begin

If (abs(maxrowsum - oldmaxrowsum) / maxrowsum) < 0.001 then

finished := false

else
finished := true;

end
else

finished := true;

oldmaxrowsum := maxrowsum;
until finished;

Psi := ScalarMatrixMult(Psi, delt, poles);

{ PHI MATRIX }

Phi := MatrixMult(A, Psi, poles);

for i := 1 to poles do
Phi[i, i] := Phi[i, i] + 1.0;

{ GAMMA VECTOR }

for i := 1 to poles do
Gamma[i] := Psi[i, poles];

end;

{ DrawTimeLine procedure---

procedure DrawTimeLine (time, mag : extended);

va r

newx, newy : integer;

begin

newx := Time2Wd(time);

newy := Mag2Ht(mag);

DrawLine(oldx, oldy, newx, newy);

oldx := newx;

oldy := newy;

end;

258

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 12

{ CalculatePlotPoints procedure }

procedure CalculatePlotPoints;

va r

i, j, n : integer;

lasttimeout, magout, plottime, Uinput : extended;

xold, xnew : vector;

begin

DP := GetNewDialog(calcpointid, nil, pointer(-l));

SetDData(DP, 1, 'Calculating data points. Please be patient!');

SetDData(DP, 2, lnt2Str(timestepnumber));

plottime := 0.0;

lasttimeout := plottime;

for i := 1 to poles do { initialize states}

xold[i] := 0.0;

for n := 1 to timestepnumber do
begin

SetDData(DP, 2, lnt2Str(timestepnumber - n));

case timedata.inputtype of

1 : { step }

Uinput := timedata.amp;

2 : { ramp}

Uinput := timedata.dcoff + plottime * timedata. slope;

3 : { impulse
}

if plottime = 0.0 then
Uinput := timedata.impamp

else

Uinput := 0.0;

4 : { sine wave

}

Uinput := timedata.amp * sin(timedata.freq * plottime);

end; { case }

xnew := MatrixVectorMult(Phi, xold, poles);

for i := 1 to poles do
xnew[i] := xnew[i] + Gamma[i] * Uinput;

magout := 0.0;

{ determine if time to display data, if so, do it }

if plottime >= lasttimeout then
begin
lasttimeout := lasttimeout + timeinterval;

for i := 1 to poles do
magout := magout + C[i] * xnew[i];

if poles = zeros then

magout := magout + effgain * tempblock.num.coef[zeros + 1] * Uinput;

if magout > plotmaxmag then { avoid overflows }

magout := 1.1 * plotmaxmag;

if magout < plotminmag then

magout := -1.1 * plotmaxmag;

DrawTimel_ine(plottime, magout);

end;

plottime := plottime + delt;

xold := xnew;

end; {for n := 1 to timestepnumber do } .

DisposDialog(DP);

259

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 13

end;

{ DoDataPlot procedure
}

procedure DoDataPlot;

begin
CalculateMatrixAndVector;

ClipRect(plotrect);

pensize(2, 2);

CalculatePlotPoints;

ClipRect(timeclipsize);

end;

{ - DoHorizGrid procedure
procedure DoHorizGrid;

const
labelmar = 3;

va r

magtodraw : extended;

pixelht, zeroht : integer; { mag ht in pixels}

begin
pensize(1, 1);

TextSize(9);

MoveTo(labelmar, topmar + plotht);

Writelt(plotminmag, plotmagstep);

MoveTo(labelmar, topmar);

Write lt(plotmaxmag, plotmagstep);

magtodraw := plotminmag;

while (magtodraw < plotmaxmag - plotmagstep) do
begin

magtodraw := magtodraw + plotmagstep;

pixelht := Mag2Ht(magtodraw);

DrawLine(ltmar, pixelht, Itmar + plotwd - 1, pixelht);

MoveTo(labelmar, pixelht);

Writelt(magtodraw, plotmagstep);

end; { while }

if (plotminmag < 0) and (0 < plotmaxmag) then

begin

zeroht := Mag2Ht(0);

DrawLine(ltmar, zeroht, Itmar + plotwd - 1, zeroht);

end;

end;

{ DoVertGrid procedure
procedure DoVertGrid;

const
labelmar = 9;

labelshiftleft = 28;

va r

timetodraw : extended;

pixelwd, zeroht : integer; { mag ht in pixels}

begin

pensize(1, 1);

TextSize(9);

260

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 14

MoveTo(ltmar - labelshiftleft, topmar + plotht + labelmar);

Writelt(0, plottimestep);

MoveTo(ltmar + plotwd - labelshiftleft, topmar + plotht + labelmar);

Writelt(plotmaxtime, plottimestep);

timetodraw := 0;

while (timetodraw < plotmaxtime - plottimestep) do
begin
timetodraw := timetodraw + plottimestep;

pixelwd := Time2Wd(timetodraw);

DrawLine(pixelwd, topmar, pixelwd, topmar + plotht - 1);

MoveTo(pixelwd - labelshiftleft, topmar + plotht + labelmar);

Writelt(timetodraw, plottimestep);

end; { while }

MoveTo(ltmar + Num2lnteger((plotwd - StringWidth(Time (sees)')) / 2), scrnht - 11);

DrawString(Time (sees)');

end;

{ DrawBasicPlot procedure
}

procedure DrawBasicPlot;

begin

SetCursor(watch);

ShowWindow(timePtr);

SelectWindow(timePtr);

ClipRect(timeclipsize);

timePic := OpenPicture(timeclipsize);

pensize(2, 2);

FrameRect(plotrect);

DoHorizGrid;

DoVertGrid;

DoDataPlot;

ClipRect(timeclipsize);

ClosePicture;

SetWPic(timePtr, timePic);

PenNormal;

SetCursor(arrow);

end;

CalculatePlotDimensions procedure
}

procedure CalculatePlotDimensions;

const
timepoints = 3; { no. of pixels between plotted time points. }

va r

tempmagint, temptimeint : longint; { for use with FindSep
}

begin

with timedata do
begin
plotmaxtime := maxtime;

timeinterval := plotmaxtime * timepoints / plotwd;

delt := plotmaxtime / timestepnumber;

plotmaxmag := maxy;

if plotmaxmag < 10 then { is the max plot mag less than ten
}

plotmagstep := FindRealSep(plotmaxmag, 7) { will adjust plotmaxmag to next hi int value }

else

261

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 15

begin

SetRound(upward);

tempmagint := Num2Longint(maxy); { rounds up to next int value }

SetRound(tonearest);

plotmagstep := FindSep(tempmagint, 0, 7);

plotmaxmag := tempmagint;

end;

if (not zerobottom) or (inputtype = 4) then { if zero is center of the plot or input sine}

begin

plotminmag := -plotmaxmag;

, plotmagstep := 2 * plotmagstep;

end
else { if zero is the bottom of the plot}

plotminmag := 0;

If plotmaxtime < 10 then { is the max plot time less than ten}

plottimestep := FindRealSep(plotmaxtime, 8) { will adjust plotmaxtime to next hi int value
}

else
begin

SetRound(upward);

temptimeint := Num2Longint(maxtime); { rounds up to next int value }

SetRound(tonearest);

plottimestep := FindSep(temptimeint, 0, 10);

plotmaxtime := temptimeint;

end;

end; { with
}

oldx := Time2Wd(0);

oldy := Mag2Ht(0);

end;

{ DoTimeMenu procedure
}

procedure DoTimeMenu;
begin

pennormal;

TextFace([bold]);

timedata.doit := true;

plotht := scrnht - topmar - botmar;

plotwd := scrnwd - Itmar - rtmar;

LRC.v := topmar + plotht;

LRC.h := Itmar + plotwd;

ULC.v := topmar;

ULC.h := Itmar;

plotrect.topleft := ULC; { outline for plot
}

plotrect.botright := LRC;

SetRect(timeclipsize, 0, 0, 512, 323);

alertresponse := Alert(timealertid, nil); { determine input/overlay}

case alertresponse of

1 : { redraw plot

}

begin

if (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin

If timedata. layer > then
begin
ShowWindow(timePtr);

262

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 16

SelectWindow(timePtr);

end
else

Basic1Alert('A Time Response has not yet been plotted.', 1);

end
else
Basic1Alert(There are no blocks in the system.', 1);

end;

2 : { overlap plots }

begin

If (sysgroupH A\fwdbks + sysgroupH AA.backbks > 0) then

begin

If timedata. layer > then

begin
CalculatePlotDimensions;

timedata.layer := timedata. layer + 1;

HideWindow(TimePtr);

ShowWindow(timePtr);

SelectWindow(timePtr);

ClipRect(timeclipsize);

timePic := GetWPic(timePtr);

newPic := OpenPicture(timeclipsize);

DrawPicture(timePic, timeclipsize);

case timedata.layer of

2 :

penpat(dkgray);

3 :

penpat(gray);

otherwise
penpat(ltgray);

end; { case
}

DoDataPlot;

penpat(black);

ClosePicture;

SetWPic(timePtr, newPic);

ShowWindow(timePtr);

SelectWindow(timePtr);

end
else
BasidAlertfThis would be the first plot.', 1);

end
else
BasiCl Alert(There are no blocks in the system.', 1);

end;

3 : { step input
}

begin

if (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin

timedata. inputtype := 1;

ClearAIIWindows;

GetStepData;

if timedata.doit then
begin

263

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 17

CalculatePlotDimensions;

timedata.layer := 1;

DrawBasicPlot;

end;

end
else
Basid AlertfThere are no blocks in the system.', 1);

end;

4 : { ramp input }

begin

if (sysgroupHAA.fwdbks + sysgroupH AA.backbks) > then

begin

timedata.inputtype := 2;

ClearAIIWindows;

GetRampData;

if timedata.doit then
begin
CalculatePlotDimensions;

timedata.layer := 1;

DrawBasicPlot;

end;

end
else
Basid AlertfThere are no blocks in the system.', 1);

end;

5 : { inpulse}

begin

if (sysgroupH AA.fwdbks + sysgroupH AA.backbks) > then

begin

timedata.inputtype := 3;

ClearAIIWindows;

GetlmpulseData;

If timedata.doit then
begin

CalculatePlotDimensions;

timedata.layer := 1;

DrawBasicPlot;

end;

end
else
Basid Alert(There are no blocks in the system.', 1);

end;

6 : { sinewave
}

begin

if (sysgroupH AA .fwdbks + sysgroupH AA.backbks) > then

begin

timedata.inputtype := 4;

ClearAIIWindows;

GetSineData;

if timedata.doit then
begin
CalculatePlotDimensions;

timedata.layer := 1;

264

www.manaraa.com

12/02/87 21:48 CAD Time Menu Page 18

DrawBasicPlot;

end;

end
else
Basic1Alert(There are no blocks in the system.', 1);

end;

7 : { cancel

}

begin
timedata.doit := false;

end;

otherwise

end; { case
}

TextSize(12);

end;

end. { unit
}

265

www.manaraa.com

12/02/87 21:56 CAD Simp Group Page 1

unit simpgroup;

Interface
uses
xttypedefs, extender"!, CadGlobals, NumberCrunch, CADSetUp;

procedure SimpSysGroup;

function GeqGroup (grouptosimp : group;

simpID : integer;

var Gsimp : block;

var G : block;

var H : block) : boolean;

Implementation

{
- GeqGroup }

function GeqGroup;

{
(grouptosimp : group; simpID : integer; var Gsimp,G,H : block): boolean;}

var
tempi, temp2 : polycoef;

counter : integer;

GoodSimp : boolean;

Geq : block;

begin
goodsimp := true;

Gsimp := unityblock;

G := unityblock;

H := unityblock;

Geq := unityblock;

if (grouptosimp.backbks = 0) and (simpld <> 3) then { initializes H to zero if no feedback }

H.num.gain := 0;

tempi := unityblock. num;

temp2 := unityblock.num;

for counter := 1 to 5 do { set up G and H blocks}

If goodsimp then { if all mults are good so far }

with grouptosimp.bksused[counter] AA do
if used then { if this block is used}

begin

if forward then { if in forward path, put in G }

begin

If not (polymult(G.num, num, G.num) and polymult(G.den, den, G.den)) then

goodsimp := false;

end
else { if in back path put in H

}

begin
if not (polymult(H.num, num, H.num) and polymult(H.den, den, H.den)) then

goodsimp := false;

end
end; { G/H block set up

}

case simpID of

2 : { forward path
}

Geq := G;

3 : { open loop
}

if not (PolyMult(G.num, H.num, Geq. num) and PolyMult(G.den, H.den, Geq. den)) then

266

www.manaraa.com

12/02/87 21:56 CAD Simp Group Page 2

goodsimp := false;

otherwise { Geq or closed loop
}

begin

if not (PolyMult(G.num, H.den, Geq.num)) then { find Geq num }

goodsimp := false;

If not (PolyMult(G.den, H.den, tempi) and PolyMult(G.num, H.num, temp2)) then

{ find two terms to add in Geq den }

goodsimp := false;

if goodsimp then

Geq.den := PolySum(temp1, (not grouptosimp.posFback), temp2); { find Geq den}

end;

end; { case
}

if (simpID = 4) then { if closed loop
}

Geq.den := PolySum(Geq.num, true, Geq.den);

GeqGroup := goodsimp;

If goodsimp then

Gsimp := Geq
else
Basic1Alert(This group could not be simplified. Check that the order would not be above limits.', 2);

end;

SimpSysGroup }

procedure SimpSysGroup;

va r

newblockH : bksHdl;

newtitle : str255;

done, makechange : boolean;

begin

makechange := true;

repeat
done := true;

DP := GetNewDialog(getstringid, nil, pointer(-l));

SellText(DP, 4, 0, 255);

FrameDltem(DP, 1);

ModalDialog(nil, itemNum); { show the 'input name' dialog}

GetDData(DP, 4, newtitle);
{ get the new name

}

if itemNum = 2 then { if cancel }

makechange := false

else if length(newtitle) > 45 then { if title is too long
}

begin

done := false;

Basid AlertfThe title can not be longer than 45 characters.', 2)

end; { if not too long, make the change}

DisposDialog(DP);

until done;

if makechange then

begin

sysgroupH AA.maingrp := false;

newblockH := sysblockH; { set new block = old sysblock }

InitBks; { set and clear blocks in new sysgroup

}

newblockH AA
. title := newtitle;

sysgroupH AA .fwdbks := 1 ; { only one block in new sysgroup
}

newblockH AA .fromgrpHdl := sysgroupH AA .ownHdl;

267

www.manaraa.com

tZ/02/87 21:56 CAD Simp Group Page 3

sysgroupH AA.bksused[1] := newblockH;

sysblockHAA.simpform := newblockHAA.simpform;

sysblockH AA.num := newblockH AA.num;

sysblockHAA.den := newblockH AA.den;

end;

end;{ DoSimplifyGroup
}

end. { this module
}

268

www.manaraa.com

12/02/87 21:58 CAD Add Label Page 1

unit AddLabel;

interface
uses
XTTypeDefs, Extender!, CADGIobals, Number-Crunch, SANE, Extend2Stuff;

procedure DoLabelMenu;

implementation
const
Itmar =15; { indent to text from left

}

initheight = 24; { starting rect height }

addheight = 12; { inc height for each line}

borderspace = 2; { space between border rect }

va r

lefth, topv : integer;

window2change : windowPtr;

tempPic, labelPic, combinedPic : PicHandle;

clipsize : rect;

linel, Iine2, Iine3 : str255;

lineno : integer;

labelbox : rect;

nostr : str255;

dolabel : boolean;

boxht, boxwd : integer;

{ Get Label Data procedure
}

procedure GetLabelData;

va r

newstrwidth, tempstrwidth : integer;

begin

TextFace([bold]);

nostr := ";

DP := GetNewDialog(labeldid, nil, pointer(-l));

FrameDltem(DP, 1);

SellText(DP, 5, 0, 255);

ModalDialog(nil, itemNum);

If itemNum = 2 then
dolabel := false

else
begin
tempstrwidth := 0; { init string width }

dolabel := true;

GetDData(DP, 5, linel);

{
get dialog box texts }

GetDData(DP, 6, Iine2);

GetDData(DP, 7, Iine3);

If linel <> nostr then { if first line is used
}

begin
lineno := 1

;

tempstrwidth := StringWidth(linel);

end;

If Iine2 <> nostr then { if second line used
}

begin

lineno := 2;

newstrwidth := StringWidth(line2);

269

www.manaraa.com

12/02/87 21:58 CAD Add Label

if newstrwidth > tempstrwidth then { find longest str

}

tempstrwidth := newstrwidth;

end;

If Iine3 <> nostr then { if third line used
}

begin

lineno := 3;

newstrwidth := StringWidth(line3);

If newstrwidth > tempstrwidth then { find longest str}

tempstrwidth := newstrwidth;

end;

boxwd := 2 * Itmar + tempstrwidth; { set box width }

boxht := initheight + (lineno - 1) * addheight; { set box height }

end; { OK button hit
}

DisposDialog(DP);

end;

{- DrawLabel procedure
}

procedure DrawLabel;

va r

temprect : rect;

begin

EraseRect(labelbox);

Pensize(1, 1);

FrameRect(labelbox);

PenSize(2, 2);

temprect := labelbox;

lnsetRect(temprect, 2, 2);

FrameRect(temprect);

MoveTo(labelbox.left + Itmar, labelbox. top + 17);

DrawString(line1);

MoveTo(labelbox.left + Itmar, labelbox.top + 17 + addheight);

DrawString(line2);

MoveTo(labelbox.left + Itmar, labelbox.top + 17 + 2 * addheight);

DrawString(line3);

end;

{ DragBox procedure -
}

procedure DragBox;

va r

newpt, oldpt, currentpoint : point;

hOffset, vOffset, counter : integer; {for comparing mouse pos
}

OldBox, MoveBox : rect; { for moving icon box }

begin

PenMode(PatXor);

PenPat(gray);

MoveBox := labelbox; { starting posit for move box }

OldBox := MoveBox;

frameRect(OldBox);

GetMouse (currentpoint. h, currentpoint.v);

newpt := currentpoint;

oldpt := newpt;

while button do { begin moving box algorithm }

begin

270

www.manaraa.com

12/02/87 21:58 CAD Add Label Page 3

GetMouse(newpt.h, newpt.v);

if (abs(newpt.h - oldpt.h) > 1) or (abs(newpt.v - oldpt.v) > 1) then

begin
frameRect(OldBox);

hOffset := newpt.h - oldpt.h;

vOffset := newpt.v - oldpt.v;

OffsetRect(MoveBox, hOffset, vOffset);

FrameRect(MoveBox);

oldpt := newpt;

OldBox := MoveBox;

end;

end;

FrameRect(MoveBox);{ erases last MoveBox }

labelbox := Oldbox;

end;

{ Do Label Menu procedure- -
}

procedure DoLabelMenu;

begin
window2change := FrontWindow;

if window2change <> nil then

begin
GetLabelData;

If dolabel then

begin
SetRect(clipsize, 0, 0, 512, 323);

ClipRect(clipsize);

tempPic := GetWPic(window2change);

SetWPic(window2change, tempPic);

UpdateWindow(window2change);

ClipRect(clipsize);

while not button do
GetMouse(lefth, topv);

SetRect(labelbox, lefth, topv, lefth + boxwd, topv + boxht);

DragBox;

GetMouse(lefth, topv);

ShowWindow(window2change);

SelectWindow(window2change);

labelPic := OpenPicture(clipsize);

PenNormal;

DrawLabel;

ClosePicture;

DrawLabel;

PenNormal;

ignore := Alert(savelabelaid, nil);

If ignore = 1 then
begin

combinedPic := AddPic(tempPic, labelPic);

SetWPic(window2change, combinedPic);

end
else

begin

271

www.manaraa.com

t2/02/87 21:58 CAD Add Label Page 4

HideWindow(window2change);

ShowWindow(window2change);

SelectWindow(window2change);

end;

end;

end
else
Basid Alert('A window must be displayed in order to add a label.', V

end;

end. { unit }

272

www.manaraa.com

12/02/87 22:01 CAD Print Menu Page

unit PrintWindow;

interface
uses
XTTypeDefs, Extender!, CADGIobals, NumberCrunch, SANE, Extend2Stuff;

procedure DoPrintMenu;

implementation
const

{ Printing Methods
}

bDraftLoop = 0;

bSpoolLoop = 1

;

bUserl Loop = 2;

bUser2Loop = 3;

{ Printers
}

-bDevCltoh = 1;

iDevCltoh = $0100; {Cltoh}

bDevDaisy = 2;

iDevDaisy = $0200; {Daisy}

bDevLaser = 3;

iDevLaser = $0300; {Laser}

{ PrCtlCall parameters
}

iPrBitsCtl = 4;

IScreenBits = $00000000;

IPaintBits = $00000001;

IHiScreenBits = $00000010;

IHiPaintBits = $00000011;

iPrlOCtl = 5;

iPrEvtCtl = 6;

IPrEvtAII = $0002FFFD;
IPrEvtTop = $0001 FFFD;

iPrDevCtl = 7;

IPrReset = $00010000;

IPrPageEnd = $00020000;

IPrLineFeed = $00030000;

IPrLFSixth = $0003FFFF;.

IPrLFEighth = $0003FFFE;

iFMgrCtl = 8;

{ Result Codes
}

iMemFullErr = -108;

iPrAbort = 128;

ilOAbort = -27;

iPrSavPFil = -1;

{ Miscellaneous
}

sPrDrvr = '.Print';

iPrDrvrRef = -3;

iPrPgFract = 120;

iPrPgFst = 1;

iPrPgMax = 9999;

iPrRelease = 3;

iPfMaxPgs = 128;

pPrGlobals = $00000944;
type
TPRect = A Rect;

TPBitMap = ABitMap;

273

www.manaraa.com

•£2702/87 22:01 CAD Print Menu Page 2

TPrVars = record

iPrErr : Integer;

bDocLoop : SignedByte;

bUserl : SignedByte;

lUserl : Longlnt;

IUser2 : Longlnt;

IUser3 : Longlnt;

end;
TPPrVars = ATPrVars;

TPrlnfo = record
iDev : Integer;

iVRes Integer;

iHRes : Integer;

rPage Rect;

end;
TPPrlnfo = •

ATPrlnfo;

TFeed = (feedCut, feedFanfold, feedMechCut, feedOther);

TPrStl = record
wDev : Integer;

iPageV : Integer;

iPageH : Integer;

bPort : SignedByte;

feed : TFeed;

end;

TPPrStl = ATPrStl;

TScan = (scanTB, scanBT, scanLR, scanRL);

TPrXInfo = record
iRowBytes : Integer;

iBandV : Integer;

iBandH : Integer;

iDevBytes : Integer;

iBands : Integer;

bPatScale : SignedByte;

bULThick : SignedByte;

bULOffset : SignedByte;

bULShadow : SignedByte;

scan : TScan;

bXInfoX : SignedByte;

end;

TPPrXInfo = ATPrXlnfo;

TPrJob = record
iFstPage : Integer;

iLstPage : Integer;

iCopies : Integer;

bJDocLoop : SignedByte;

fFromUsr : Boolean;

pldleProc : ProcPtr;

pFileName : StringPtr;

iFileVol : Integer;

bFileVers : SignedByte;

bJobX : SignedByte;

end;

TPPrJob = ATPrJob;

274

www.manaraa.com

12/02/87 22:01 CAD Print Menu Page 3

TPrint record
iPrVersion : Integer;

Prlnfo : TPrlnfo;

rPaper : Rect;

PrStl : TPrStl;

PrlnfoPT : TPrlnfo;
.

PrXInfo : TPrXInfo;

Integer;

PrJob TPrJob;

PrintX : array[1..19] of

end;

TPPrint = ATPrint;

THPrint = ATPPrint;

TPrPort = record

GPort : GrafPort;

GProcs : QDProcs;

IGParaml : Longlnt;

IGParam2 : Longlnt;

IGParam3 : Longlnt;

IGParam4 : Longlnt;

fOurPtr : Boolean;

fOurBits : Boolean;

end;

TPPrPort = ATPrPort;

TPrStatus = record

iTotPages : Integer;

iCurPage : Integer;

iTotCopies : Integer;

iCurCopy : Integer;

iTotBands : Integer;

iCurBand : Integer;

fPgDirty : Boolean;

flmaging : Boolean;

hPrint : THPrint;

pPrPort : TPPrPort;

hPic : PicHandle;

end;

TPPrStatus = ATPrStatus;

TPfPgDir = record

iPages : Integer;

IPgPos : array[0..iPfMaxPgs] of Longlnt;

end;

TPPfPgDir = ATPfPgDir;

THPfPgDir = ATPPfPgDir;

TPfHeader record

Print : TPrint;

PfPgDir : TPfPgDir;

end;

TPPfHeader = ATPfHeader;

THPfHeader = ATPPfHeader;

TPrDIg = record

Dig : DialogRecord;

pFltrProc : ProcPtr;

pltemProc : ProcPtr;

275

www.manaraa.com

12/02/87 22:01 CAD Print Menu Page 4

hPrintUsr : THPrint;

fDolt : Boolean;

fDone : Boolean;

lUserl : Longlnt;

IUser2 : Longlnt;

IUser3 ; Longlnt;

IUser4 : Longlnt;

{ ...Plus more stuff needed by the particular printing dialog...
}

end;

TPPrDIg = ATPrDlg;

{ Initialization
}

procedure PrOpen;

external;

procedure PrClose;

external;

{ Print Dialogs & Default
}

procedure PrintDefault (hPrint : THPrint);

external;

function PrValidate (hPrint : THPrint) : Boolean;

external;

function PrStlDialog (hPrint : THPrint) : Boolean;

external;

function PrJobDialog (hPrint : THPrint) : Boolean;

external;

procedure PrJobMerge (hPrintSrc, hPrintDst : THPrint);

external;

{ Document printing procs: These spool a print file.
}

function PrOpenDoc (hPrint : THPrint;

pPrPort : TPPrPort;

plOBuf : Ptr) : TPPrPort;

external;

procedure PrCloseDoc (pPrPort : TPPrPort);

external;

procedure PrOpenPage (pPrPort : TPPrPort;

pPageFrame : TPRect);

external;

procedure PrClosePage (pPrPort : TPPrPort);

{ The "Printing Application" proc: Read and band the spooled PicFile.
}

external;

procedure PrPicFile (hPrint : THPrint;

pPrPort : TPPrPort;

plOBuf : Ptr;

pDevBuf : Ptr;

var PrStatus : TPrStatus);

{ Get/Set the current Print Error
}

external;

function PrError : Integer;

external;

procedure PrSetError (iErr : Integer);

{ The .Print driver calls.
}

external;

procedure PrDrvrOpen;

external;

276

www.manaraa.com

12/02/87 22:01 CAD Print Menu Page 5

procedure PrDrvrClose;

external;

procedure PrCtlCall (iWhichCtl : Integer;

IParaml, IParam2, IParam3 : Longlnt);

{ Semi private stuff
}

external;

function PrStllnit (hPrint : THPrint) : TPPrDIg;

external;

function PrJoblnit (hPrint : THPrint) : TPPrDIg;

external;

function PrDlgMain (hPrint : THPrint;

pDlglnit : ProcPtr) : Boolean;

external;

procedure PrPurge;

external;

procedure PrNoPurge;

external;

function PrDrvrDCE : Handle;

external;

function PrDrvrVers : Integer;

external;

function PrintWPic (W : WindowPtr;

hPrint : THPrint) : OSErr;

external;

function NewPrintHandle : THPrint;

va r

hPrint : THPrint;

begin
PrOpen; { Be sure Printing Manager is open

}

hPrint := THPrint(NewHandle(SIZEOF(TPrint)));{ Allocate memory on heap
}

PrintDefault(hPrint); { Set print record to default values
}

NewPrintHandle := hPrint;

end;

{ DoPrintMenu procedure
}

procedure DoPrintMenu;

va r

printH : THPrint;

temperr : OSErr;

doit : boolean;

window2print : windowPtr;

begin

window2print := FrontWindow;

if window2print <> nil then
begin

PrOpen;

printH := NewPrintHandle;

doit := PrStlDialog(printH);

if doit then
doit := PrJobDialog(printH);

if doit then
begin

SetCursor(watah);

277

www.manaraa.com

12/02/87 22:01 CAD Print Menu Page 6

temperr := PrintWPic(window2print, printH);

SetCursor(arrow);

end;

PrClose;

end
else
Basic1Alert(There must be a window displayed in order to print.', 1);

end;

end.

278

www.manaraa.com

12/02/87 22:04 CAD Tile Menu Page 1

unit WindowTile;

Interface
uses
XTTypeDefs, XTTypeDefs2, XTDatalO, CADGIobals, CADSelUp, Extended, NumberCrunch;

procedure DoWindowMenu (item : integer);

procedure SaveFile;

procedure OpenFile (anoldfile : boolean);

implementation
va r

thedata : datalist;

procedure TileFill (boundsRect : Rect;

theList : DataList;

animate : Boolean);

external;

procedure TileVertical (boundsRect : Rect;

theList : DataList;

animate : Boolean);

external;

procedure TileHorizontal (boundsRect : Rect;

theList : DataList;

animate : Boolean);

external;

procedure StackWindows (boundsRect : Rect;

theList : DataList;

animate : Boolean);

external;

{ MoveBack procedure
}

procedure MoveBack;

va r

tempwindow : windowPtr;

begin

tempwindow := FrontWindow;

if tempwindow = nil then
Basic1Alert('No windows are displayed.', 1)

else

SendBehind(tempwindow, nil);

end;

{ FillDataList procedure
}

procedure FillDataList;

va r

windowtoload, firstwindow : windowPtr;

counter : integer;

done : boolean;

begin

done := false;

InitDataList(thedata);

counter := -1;

repeat
windowtoload := FrontWindow;

If windowtoload <> nil then
begin

279

www.manaraa.com

12/02/87 22:04 CAD Tile Menu Page 2

counter := counter + 1

;

if counter then { set first window flag
}

begin
firstwindow := windowtoload;

thedata.pltem[0] := Ptr(windowtoload);

MoveBack;

end
else if windowtoload = firstwindow then { check flag}

done := true { started repeating
}

else
begin

thedata.pltem[counter] := Ptr(windowtoload);

MoveBack;

end;

end
else { windowtoload = nil

}

done := true;

until done;

if counter = -1 then
Basic1Alert(There are no plots displayed.', 1);

thedata.numHandles := counter;

thedata.numPointers := counter;

end;

{ ShowAII procedure }

procedure ShowAII (var plotexists : boolean);

begin
plotexists := false;

if timedata. layer <> then
begin
plotexists := true;

ShowWindow(timePtr);

end;

if nyquistdata.layer <> then
begin

plotexists := true;

ShowWindow(nyqPtr);

end;

if rlocusdata.layer <> then
begin

plotexists := true;

ShowWindow(rootPtr);

end;

if bodedata. layer <> then

begin

plotexists := true;

ShowWindow(bodePtr);

end;

end;

CloseFront procedure-
procedure CloseFront;

var

280

www.manaraa.com

12/02/87 22:04 CAD Tile Menu Page 3

tempwindow : windowPtr;

begin
tempwindow := FrontWindow;

If tempwindow = nil then
Basic1Alert('No windows are displayed.', 1)

else
HideWindow(tempwindow);

end;

{ DoWindowMenu procedure-

procedure DoWindowMenu;
va r

plotshown : boolean;

begin

if item < 5 then
FillDataList;

case item of

1 :

TileFill(screenBits. bounds, thedata, true);

2 :

TileVertical(screenBits.bounds, thedata, true);

3 :

TileHorizontal(screenBits.bounds, thedata, true);

4 :

StackWindows(screenBits.bounds, thedata, true);

5 :

begin

ShowAII(plotshown);

If not plotshown then
Basid AlertfNo plots have been drawn.', 1);

end;

6 :

MoveBack;

7 : { close front }

CloseFront;

otherwise

f

end; { case
}

end;

{ SaveSimpBlock procedure-
procedure SaveSimpBlock (blockinH : bksHdl);

va r

blockstosave, counter : integer;

begin

with filedata do
begin

numHandles := numHandles + 1;

hltem[numHandles] := Handle(blockinH);

numHandles := numHandles + 1;

hltem[numHandles] := Handle(blockinH AA.subgrp);

with blockinH A\subgrp AA do
begin

281

www.manaraa.com

12/02/87 22:04 CAD Tile Menu Page 4

blockstosave := fwdbks + backbks; { find no of blocks in group
}

for counter := 1 to 5 do
begin

if bksused[counter] AA.used then { is this block used

}

begin

if bksused[counter]AA.simplified then { it is also simplified}

SaveSimpBlock(bksused[counter])

else { it's not simplified so save it}

begin
numHandles := numHandles + 1

;

hltem[numHandles] := Handle(bksused[counter]);

end; { else block not simp so save it
}

end; { if used}

end; { for}

end; { with blockinH.subgrp
}

end; { with filedata }

end;

{ SaveFile procedure }

procedure SaveFile;

va r

err : OSErr;

begin
InitDataList(filedata);

SaveSimpBlock(sysblockH);

err := WriteData(filedata, 'MCAD\ 'CADD', savereply);

if (err <> noErr) then
Basid Alert('Save unsuccessful. An error occurred while saving the file.', 2);

end;

{ GetBlockGroup procedure
}

procedure GetBlockGroup (var blockinH : bksHdl);

va r

newgroupH : grpHdl;

newblockH : bksHdl;

numbks, counter : integer;

begin

with newdata do
begin

numHandles := numHandles + 1;

newgroupH := grpHdl(hltem[numHandles]);
{ get the group

}

with newgroupHAA do
begin

numbks := fwdbks + backbks;

ownHdl := newgroupH;

blockinHAA.subgrp := newgroupH;

masterblock ;= blockinH;

If numHandles = 2 then

sysgroupH := newgroupH;

for counter := 1 to numbks do
{
get blocks in group

}

begin

numHandles := numHandles + 1;

bksused[counter] := bksHdl(hltem[numHandles]);

282

www.manaraa.com

12/02/87 22:04 CAD Tile Menu Page 5

bksused[counter]AA .fromgrpHdl := newgroupH;

If bksused[counter] A\ simplified then { this block is simplified

}

GetBlockGroup(bksused[counter]);

end;{ for}

if numbks < 5 then

begin

for counter := numbks + 1 to 5 do
begin
bksused[counter] := BksHdl(NewHandle(Sizeof(block)));

bksused[counter] AA := noblock;

bksused[counter] AA.fromgrpHdl := newgroupH;

end; {for }

end;{ if bksused < 5 }

end; { with newgroupH }

end; { with new data }

end;

{ Open File procedure}

procedure OpenFile;

va r J
err : OSErr;

tempsysblock : bksHdl;

tempi size, temp2size : size;

begin

tempi size := MaxMem(templsize);

InitDataList(newdata);

savereply.good := anoldfile;

err := ReadData(newdata, 'MCAD', 'CADD', savereply);

if (err = noErr) then
begin
newdata.numHandles := 1;

tempsysblock := bksHdl(newdata.hltem[1]);
{ get sysblock }

sysblockH AA := tempsysblockAA
; { get sysblock }

GetBlockGroup(sysblockH);

end { open it}

else
Basic1Alert('An error occured while loading the selected file. No file has been opened.', 2);

end;

end. { unit }

283

www.manaraa.com

12/02/87 22:06 CAD CloseAII Page 1

unit AllClose;

interface
uses
XTTypeDefs, CADGIobals, Extender"!;

procedure CloseAII;

implementation
procedure CloseTheWindows;

begin
KillWindow(bodePtr);

KillWindow(rootPtr);

KillWindow(nyqPtr);

KillWindow(timePtr);

end;

procedure CloseAII;

begin

CloseTheWindows;

CloseResFile(fRefNum);

end;

end.

284

www.manaraa.com

LIST OF REFERENCES

1

.

Kuo, B. C. Automatic Control Systems . 4th ed.
, p 563,

Prentice-Hall, Inc, 1982.

2. Wood, R. L. Microcomputer Based Linear System Design Tool .

M.S.E.E. thesis, Naval Postgraduate School, Department of

Electrical and Computer Engineering, Monterey, Ca, Dec. 1986

285

www.manaraa.com

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Commander 1

Naval Weapons Canter

China Lake, California 93555

3. Chief of Naval Operations 1

Attn: Code OP-03
Washington, D.C. 20350

4. Director 1

Naval Research Laboratory

Washington, D.C. 20375

5. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

6. Department Chairman, Code 62 1

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943

7. Professor G. J. Thaler, Code 62Tr 1 5

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93943

8. Assoc. Professor Daniel L. Davis, Code 52Dv 1

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93943

286

www.manaraa.com

9. Professor H. A. Titus, Code 62Ti

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93943

10. Asst. Professor Jeffrey Burl, Code 62BI

Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93943

1 1

.

Lieutenant Kenneth MacDonald
c/o. Cdr Donald A. MacDonald
420 Westcrest Drive

Kerrville, Texas 78028

12. Lieutenant Roy L. Wood
Route 1, Driftwood Cove #20
Jefferson, Texas 75657

287

www.manaraa.com

www.manaraa.com

www.manaraa.com
2 i<i - «&n

www.manaraa.com

www.manaraa.com

www.manaraa.com

£
UD RY

'^OOLOL
300*

Thesis
M18327 MacDonald

i

c -l MacCAD computer aided
design tool for system
analysis.

Thesis
M18327 MacDonald
cl MacCAD computer aided

design tool for system
analysis.

&r*£

www.manaraa.com

